Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa.

IF 4.9 Q2 NANOSCIENCE & NANOTECHNOLOGY Nanotechnology, Science and Applications Pub Date : 2025-02-18 eCollection Date: 2025-01-01 DOI:10.2147/NSA.S498942
Magdalena Lasak, Małgorzata Łysek-Gładysińska, Karolina Lach, Viraj P Nirwan, Dorota Kuc-Ciepluch, Javier Sanchez-Nieves, Francisco Javier de la Mata, Amir Fahmi, Karol Ciepluch
{"title":"Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa.","authors":"Magdalena Lasak, Małgorzata Łysek-Gładysińska, Karolina Lach, Viraj P Nirwan, Dorota Kuc-Ciepluch, Javier Sanchez-Nieves, Francisco Javier de la Mata, Amir Fahmi, Karol Ciepluch","doi":"10.2147/NSA.S498942","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds.</p><p><strong>Methods: </strong>This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin.</p><p><strong>Results: </strong>The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts.</p><p><strong>Conclusion: </strong>The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.</p>","PeriodicalId":18881,"journal":{"name":"Nanotechnology, Science and Applications","volume":"18 ","pages":"57-70"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11846615/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology, Science and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2147/NSA.S498942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: As bacterial resistance to antibiotics increases, there is an urgent need to identify alternative antibacterial agents and improve antibacterial materials. One is the controlled transport of antibacterial agents that prevents infection with drug-resistant bacteria, especially in the treatment of difficult-to-heal wounds.

Methods: This work presents the use of electrospun PLCL/PVP (poly(L-lactide-co-ε-caprolactone/polyvinylpyrrolidone) nanofibers modified with two agents with antibacterial properties but with different mechanisms of action, that is, dendritic silver nanoparticles (Dend-AgNPs) and endolysin.

Results: The nanomat prepared in this manner showed significant antibacterial activity against antibiotic-resistant Pseudomonas aeruginosa strains, inhibiting their growth and production of key pigments and virulence factors. Moreover, the use of nanofibers as carriers of the selected factors significantly reduced their cytotoxicity towards human fibroblasts.

Conclusion: The results confirmed the possibility of using the presented product as an innovative dressing material, opening new perspectives for the treatment of wounds and combating bacterial infections with drug-resistant bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotechnology, Science and Applications
Nanotechnology, Science and Applications NANOSCIENCE & NANOTECHNOLOGY-
CiteScore
11.70
自引率
0.00%
发文量
3
审稿时长
16 weeks
期刊介绍: Nanotechnology, Science and Applications is an international, peer-reviewed, Open Access journal that focuses on the science of nanotechnology in a wide range of industrial and academic applications. The journal is characterized by the rapid reporting of reviews, original research, and application studies across all sectors, including engineering, optics, bio-medicine, cosmetics, textiles, resource sustainability and science. Applied research into nano-materials, particles, nano-structures and fabrication, diagnostics and analytics, drug delivery and toxicology constitute the primary direction of the journal.
期刊最新文献
An Approach to Enhance the Solubility of an Atypical Antipsychotic Drug, Aripiprazole: Design, Characterization, and Evaluation of Arabinoxylan-Based Nanoparticles. Green Synthesis of Metal Nanoparticles Using Cinnamomum-Based Extracts and Their Applications. Enhanced Stability and Reusability of Subtilisin Carlsberg Through Immobilization on Magnetic Nanoparticles. Electrospun Nanofibers for the Delivery of Endolysin/Dendronized Ag-NPs Complex Against Pseudomonas aeruginosa. Nanoparticles in Plant Cryopreservation: Effects on Genetic Stability, Metabolic Profiles, and Structural Integrity in Bleeding Heart (Papaveraceae) Cultivars.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1