Calcium Imaging of Central Amygdala Activity After Escalation of Fentanyl Self-Administration.

IF 4.6 2区 医学 Q1 NEUROSCIENCES Neuropharmacology Pub Date : 2025-02-21 DOI:10.1016/j.neuropharm.2025.110370
Samantha G Malone, Navid S Tavakoli, Peggy S Keller, Michael T Bardo, Pavel I Ortinski
{"title":"Calcium Imaging of Central Amygdala Activity After Escalation of Fentanyl Self-Administration.","authors":"Samantha G Malone, Navid S Tavakoli, Peggy S Keller, Michael T Bardo, Pavel I Ortinski","doi":"10.1016/j.neuropharm.2025.110370","DOIUrl":null,"url":null,"abstract":"<p><p>The central amygdala (CeA) is involved in opioid relapse-associated behaviors. This study determined if escalation of fentanyl intake as modeled by long-access (LgA) self-administration (SA) alters ex vivo neuronal activity in CeA in response to fentanyl during acute withdrawal and protracted abstinence. Adult male and female Sprague-Dawley rats were trained to self-administer fentanyl or saline across 7 daily 1-h short access (ShA) sessions, followed by 21 6-h long access (LgA) sessions. Following acute (17 h) or protracted (30 days) withdrawal, withdrawal signs were assessed and rats were euthanized for CeA calcium imaging in brain slices. Fentanyl rats demonstrated reduced basal frequency of activity after 30 days withdrawal, but not after 17 h withdrawal. Regardless of SA group, acute fentanyl application in slices reduced activity (frequency, duration, active cell number) of CeA neurons. In acute withdrawal, the magnitude to which acute fentanyl suppressed CeA neuronal activity was smaller in fentanyl SA rats, relative to saline SA controls. However, the magnitude of acute fentanyl effect on suppression of CeA activity was greater in fentanyl SA rats (vs. saline SA controls) after protracted abstinence.</p>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":" ","pages":"110370"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuropharmacology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuropharm.2025.110370","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The central amygdala (CeA) is involved in opioid relapse-associated behaviors. This study determined if escalation of fentanyl intake as modeled by long-access (LgA) self-administration (SA) alters ex vivo neuronal activity in CeA in response to fentanyl during acute withdrawal and protracted abstinence. Adult male and female Sprague-Dawley rats were trained to self-administer fentanyl or saline across 7 daily 1-h short access (ShA) sessions, followed by 21 6-h long access (LgA) sessions. Following acute (17 h) or protracted (30 days) withdrawal, withdrawal signs were assessed and rats were euthanized for CeA calcium imaging in brain slices. Fentanyl rats demonstrated reduced basal frequency of activity after 30 days withdrawal, but not after 17 h withdrawal. Regardless of SA group, acute fentanyl application in slices reduced activity (frequency, duration, active cell number) of CeA neurons. In acute withdrawal, the magnitude to which acute fentanyl suppressed CeA neuronal activity was smaller in fentanyl SA rats, relative to saline SA controls. However, the magnitude of acute fentanyl effect on suppression of CeA activity was greater in fentanyl SA rats (vs. saline SA controls) after protracted abstinence.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuropharmacology
Neuropharmacology 医学-神经科学
CiteScore
10.00
自引率
4.30%
发文量
288
审稿时长
45 days
期刊介绍: Neuropharmacology publishes high quality, original research and review articles within the discipline of neuroscience, especially articles with a neuropharmacological component. However, papers within any area of neuroscience will be considered. The journal does not usually accept clinical research, although preclinical neuropharmacological studies in humans may be considered. The journal only considers submissions in which the chemical structures and compositions of experimental agents are readily available in the literature or disclosed by the authors in the submitted manuscript. Only in exceptional circumstances will natural products be considered, and then only if the preparation is well defined by scientific means. Neuropharmacology publishes articles of any length (original research and reviews).
期刊最新文献
Editorial Board Microglial Phagocytosis and Regulatory Mechanisms: Key Players in the Pathophysiology of Depression. Calcium Imaging of Central Amygdala Activity After Escalation of Fentanyl Self-Administration. Hippocampus muscarinic M4 receptor mRNA expression may influence central cholinergic activity, causing fear memory strengthening by peripheral adrenaline. Inhibition of HCN channels decreases motivation for alcohol and deprivation-induced drinking in alcohol preferring rats
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1