[Construction and Validation of A Prognostic Model for Lung Adenocarcinoma 
Based on Ferroptosis-related Genes].

Zhanrui Zhang, Wenhao Zhao, Zixuan Hu, Chen Ding, Hua Huang, Guowei Liang, Hongyu Liu, Jun Chen
{"title":"[Construction and Validation of A Prognostic Model for Lung Adenocarcinoma \u2029Based on Ferroptosis-related Genes].","authors":"Zhanrui Zhang, Wenhao Zhao, Zixuan Hu, Chen Ding, Hua Huang, Guowei Liang, Hongyu Liu, Jun Chen","doi":"10.3779/j.issn.1009-3419.2025.102.04","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ferroptosis-related genes play a crucial role in regulating intracellular iron homeostasis and lipid peroxidation, and they are involved in the regulation of tumor growth and drug resistance. The expression of ferroptosis-related genes in tumor tissues can be used to predict patients' future survival times, aiding doctors and patients in anticipating disease progression. Based on the sequencing data of lung adenocarcinoma (LUAD) patients from The Cancer Genome Atlas (TCGA) database, this study identified genes involved in the regulation of ferroptosis, constructed a prognostic model, and evaluated the predictive performance of the model.</p><p><strong>Methods: </strong>A total of 1467 ferroptosis-related genes were obtained from the GeneCards database. Gene expression profiles and clinical data from 541 LUAD patients were collected from the TCGA database. The expression data of all ferroptosis-related genes were extracted, and differentially expressed genes were identified using R software. Survival analysis was performed on these genes to screen for those with prognostic value. Subsequently, a prognostic risk scoring model for ferroptosis-related genes was constructed using LASSO regression model. Each LUAD patient sample was scored, and the patients were divided into high-risk and low-risk groups based on the median score. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated. Kaplan-Meier survival curves were generated to assess model performance, followed by validation in an external dataset. Finally, univariate and multivariate Cox regression analyses were conducted to evaluate the independent prognostic value and clinical relevance of the model.</p><p><strong>Results: </strong>Through survival analysis, 121 ferroptosis-related genes associated with prognosis were initially identified. Based on this, a LUAD prognostic risk scoring model was constructed using 12 ferroptosis-related genes (ALG3, C1QTNF6, CCT6A, GLS2, KRT6A, LDHA, NUPR1, OGFRP1, PCSK9, TRIM6, IGF2BP1 and MIR31HG). The results indicated that patients in the high-risk group had significantly shorter survival time than those in the low-risk group (P<0.001), and the model demonstrated good predictive performance in both the training set (1-yr AUC=0.721) and the external validation set (1-yr AUC=0.768). Risk scores were significantly associated with the prognosis of LUAD patients in both univariate and multivariate Cox regression analyses (P<0.001), suggesting that this score is an important prognostic factor for LUAD patients.</p><p><strong>Conclusions: </strong>This study successfully established a LUAD risk scoring model composed of 12 ferroptosis-related genes. In the future, this model is expected to be used in conjunction with the tumor-node-metastasis (TNM) staging system for prognostic predictions in LUAD patients.</p>","PeriodicalId":39317,"journal":{"name":"中国肺癌杂志","volume":"28 1","pages":"22-32"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848621/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国肺癌杂志","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3779/j.issn.1009-3419.2025.102.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Ferroptosis-related genes play a crucial role in regulating intracellular iron homeostasis and lipid peroxidation, and they are involved in the regulation of tumor growth and drug resistance. The expression of ferroptosis-related genes in tumor tissues can be used to predict patients' future survival times, aiding doctors and patients in anticipating disease progression. Based on the sequencing data of lung adenocarcinoma (LUAD) patients from The Cancer Genome Atlas (TCGA) database, this study identified genes involved in the regulation of ferroptosis, constructed a prognostic model, and evaluated the predictive performance of the model.

Methods: A total of 1467 ferroptosis-related genes were obtained from the GeneCards database. Gene expression profiles and clinical data from 541 LUAD patients were collected from the TCGA database. The expression data of all ferroptosis-related genes were extracted, and differentially expressed genes were identified using R software. Survival analysis was performed on these genes to screen for those with prognostic value. Subsequently, a prognostic risk scoring model for ferroptosis-related genes was constructed using LASSO regression model. Each LUAD patient sample was scored, and the patients were divided into high-risk and low-risk groups based on the median score. Receiver operating characteristic (ROC) curves were plotted, and the area under the curve (AUC) was calculated. Kaplan-Meier survival curves were generated to assess model performance, followed by validation in an external dataset. Finally, univariate and multivariate Cox regression analyses were conducted to evaluate the independent prognostic value and clinical relevance of the model.

Results: Through survival analysis, 121 ferroptosis-related genes associated with prognosis were initially identified. Based on this, a LUAD prognostic risk scoring model was constructed using 12 ferroptosis-related genes (ALG3, C1QTNF6, CCT6A, GLS2, KRT6A, LDHA, NUPR1, OGFRP1, PCSK9, TRIM6, IGF2BP1 and MIR31HG). The results indicated that patients in the high-risk group had significantly shorter survival time than those in the low-risk group (P<0.001), and the model demonstrated good predictive performance in both the training set (1-yr AUC=0.721) and the external validation set (1-yr AUC=0.768). Risk scores were significantly associated with the prognosis of LUAD patients in both univariate and multivariate Cox regression analyses (P<0.001), suggesting that this score is an important prognostic factor for LUAD patients.

Conclusions: This study successfully established a LUAD risk scoring model composed of 12 ferroptosis-related genes. In the future, this model is expected to be used in conjunction with the tumor-node-metastasis (TNM) staging system for prognostic predictions in LUAD patients.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
中国肺癌杂志
中国肺癌杂志 Medicine-Pulmonary and Respiratory Medicine
CiteScore
1.40
自引率
0.00%
发文量
5131
审稿时长
14 weeks
期刊介绍: Chinese Journal of Lung Cancer(CJLC, pISSN 1009-3419, eISSN 1999-6187), a monthly Open Access journal, is hosted by Chinese Anti-Cancer Association, Chinese Antituberculosis Association, Tianjin Medical University General Hospital. CJLC was indexed in DOAJ, EMBASE/SCOPUS, Chemical Abstract(CA), CSA-Biological Science, HINARI, EBSCO-CINAHL,CABI Abstract, Global Health, CNKI, etc. Editor-in-Chief: Professor Qinghua ZHOU.
期刊最新文献
[Construction and Validation of A Prognostic Model for Lung Adenocarcinoma 
Based on Ferroptosis-related Genes]. [Dual Roles of Neutrophil Extracellular Traps in Lung Cancer: 
Mechanism Exploration and Therapeutic Prospects]. [Exploration and Challenge of Whole Course Follow-up Management Model 
for Small Cell Lung Cancer]. [Intestinal Flora Dysregulation and Lung Cancer: 
Mechanism Analysis and Clinical Application]. [Real-world Study of Icotinib in EGFR Mutant Non-small Cell Lung Cancer 
Based on the Therapeutic Drug Monitoring].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1