Liang Xia, Jun Zhang, Zhipeng Liang, Jun Tang, Jianguo Xia, Yongkang Liu
{"title":"Shapley-based saliency maps improve interpretability of vertebral compression fractures classification: multicenter study.","authors":"Liang Xia, Jun Zhang, Zhipeng Liang, Jun Tang, Jianguo Xia, Yongkang Liu","doi":"10.1007/s11547-025-01968-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Evaluate the classification performance and interpretability of the Vision Transformer (ViT) model on acute and chronic vertebral compression fractures using Shapley significance maps.</p><p><strong>Materials and methods: </strong>This retrospective study utilized medical imaging data from December 2018 to December 2023 from three hospitals in China. The study included 942 patients, with imaging data comprising X-rays, CTs, and MRIs. Patients were divided into training, validation, and test sets with a ratio of 7:2:1. The ViT model variant, SimpleViT, was fine-tuned on the training dataset. Statistical analyses were performed using the PixelMedAI platform, focusing on metrics such as ROC curves, sensitivity, specificity, and AUC values, with statistical significance assessed using the DeLong test.</p><p><strong>Results: </strong>A total of 942 patients (mean age 69.17 ± 10.61 years) were included, with 1076 vertebral fractures analyzed (705 acute, 371 chronic). In the test set, the ViT model demonstrated superior performance over the ResNet18 model, with an accuracy of 0.880 and an AUC of 0.901 compared to 0.843 and 0.833, respectively. The use of ViT Shapley saliency maps significantly enhanced diagnostic sensitivity and specificity, reaching 0.883 (95% CI: 0.800, 0.963) and 0.950 (95% CI: 0.891, 1.00), respectively.</p><p><strong>Conclusion: </strong>In vertebral compression fractures classification, Vision Transformer outperformed Convolutional Neural Network, providing more effective Shapley-based saliency maps that were favored by radiologists over GradCAM.</p>","PeriodicalId":20817,"journal":{"name":"Radiologia Medica","volume":" ","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologia Medica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11547-025-01968-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: Evaluate the classification performance and interpretability of the Vision Transformer (ViT) model on acute and chronic vertebral compression fractures using Shapley significance maps.
Materials and methods: This retrospective study utilized medical imaging data from December 2018 to December 2023 from three hospitals in China. The study included 942 patients, with imaging data comprising X-rays, CTs, and MRIs. Patients were divided into training, validation, and test sets with a ratio of 7:2:1. The ViT model variant, SimpleViT, was fine-tuned on the training dataset. Statistical analyses were performed using the PixelMedAI platform, focusing on metrics such as ROC curves, sensitivity, specificity, and AUC values, with statistical significance assessed using the DeLong test.
Results: A total of 942 patients (mean age 69.17 ± 10.61 years) were included, with 1076 vertebral fractures analyzed (705 acute, 371 chronic). In the test set, the ViT model demonstrated superior performance over the ResNet18 model, with an accuracy of 0.880 and an AUC of 0.901 compared to 0.843 and 0.833, respectively. The use of ViT Shapley saliency maps significantly enhanced diagnostic sensitivity and specificity, reaching 0.883 (95% CI: 0.800, 0.963) and 0.950 (95% CI: 0.891, 1.00), respectively.
Conclusion: In vertebral compression fractures classification, Vision Transformer outperformed Convolutional Neural Network, providing more effective Shapley-based saliency maps that were favored by radiologists over GradCAM.
期刊介绍:
Felice Perussia founded La radiologia medica in 1914. It is a peer-reviewed journal and serves as the official journal of the Italian Society of Medical and Interventional Radiology (SIRM). The primary purpose of the journal is to disseminate information related to Radiology, especially advancements in diagnostic imaging and related disciplines. La radiologia medica welcomes original research on both fundamental and clinical aspects of modern radiology, with a particular focus on diagnostic and interventional imaging techniques. It also covers topics such as radiotherapy, nuclear medicine, radiobiology, health physics, and artificial intelligence in the context of clinical implications. The journal includes various types of contributions such as original articles, review articles, editorials, short reports, and letters to the editor. With an esteemed Editorial Board and a selection of insightful reports, the journal is an indispensable resource for radiologists and professionals in related fields. Ultimately, La radiologia medica aims to serve as a platform for international collaboration and knowledge sharing within the radiological community.