Microinjection of angiotensin II into zebrafish embryos induces transient dilation and elastin disruption of the dorsal aorta.

IF 2.2 Q3 PHYSIOLOGY Physiological Reports Pub Date : 2025-02-01 DOI:10.14814/phy2.70259
Shota Tanifuji, Keiko Uchida, Genri Kawahara, Takashi Nakamura, Saki Iida, Yukiko K Hayashi, Utako Yokoyama
{"title":"Microinjection of angiotensin II into zebrafish embryos induces transient dilation and elastin disruption of the dorsal aorta.","authors":"Shota Tanifuji, Keiko Uchida, Genri Kawahara, Takashi Nakamura, Saki Iida, Yukiko K Hayashi, Utako Yokoyama","doi":"10.14814/phy2.70259","DOIUrl":null,"url":null,"abstract":"<p><p>The effects of angiotensin II (AngII) on blood vessel development and remodeling have been extensively investigated in mice and humans. However, its action on the vessels in the zebrafish remains largely unknown. To investigate whether AngII affects vascular morphology in vivo, we administered AngII into the endothelial-specific transgenic reporter zebrafish (Tg[kdrl:EGFP]) at the 1-cell stage. The average dorsal aortic diameter of five serial positions was significantly increased by 20% in AngII-injected zebrafish compared with buffer-injected controls at 5 days post-fertilization. Histological studies in AngII-injected zebrafish at 8 weeks post-fertilization showed that elastic fiber formation was partly attenuated, with enhanced matrix metalloproteinase-2 expression in the dorsal aorta without dilation. These results suggest that AngII induced transient aortic expansion in early larvae and may affect vascular elastic fiber formation in adult zebrafish. The use of the AngII-injected zebrafish model is a potential tool to dissect the mechanisms of disruption of elastic vascular wall formation in the aorta.</p>","PeriodicalId":20083,"journal":{"name":"Physiological Reports","volume":"13 4","pages":"e70259"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11848543/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiological Reports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14814/phy2.70259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The effects of angiotensin II (AngII) on blood vessel development and remodeling have been extensively investigated in mice and humans. However, its action on the vessels in the zebrafish remains largely unknown. To investigate whether AngII affects vascular morphology in vivo, we administered AngII into the endothelial-specific transgenic reporter zebrafish (Tg[kdrl:EGFP]) at the 1-cell stage. The average dorsal aortic diameter of five serial positions was significantly increased by 20% in AngII-injected zebrafish compared with buffer-injected controls at 5 days post-fertilization. Histological studies in AngII-injected zebrafish at 8 weeks post-fertilization showed that elastic fiber formation was partly attenuated, with enhanced matrix metalloproteinase-2 expression in the dorsal aorta without dilation. These results suggest that AngII induced transient aortic expansion in early larvae and may affect vascular elastic fiber formation in adult zebrafish. The use of the AngII-injected zebrafish model is a potential tool to dissect the mechanisms of disruption of elastic vascular wall formation in the aorta.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
向斑马鱼胚胎显微注射血管紧张素 II 可诱导背主动脉一过性扩张和弹性蛋白断裂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physiological Reports
Physiological Reports PHYSIOLOGY-
CiteScore
4.20
自引率
4.00%
发文量
374
审稿时长
9 weeks
期刊介绍: Physiological Reports is an online only, open access journal that will publish peer reviewed research across all areas of basic, translational, and clinical physiology and allied disciplines. Physiological Reports is a collaboration between The Physiological Society and the American Physiological Society, and is therefore in a unique position to serve the international physiology community through quick time to publication while upholding a quality standard of sound research that constitutes a useful contribution to the field.
期刊最新文献
An investigation into the sex dependence of post-reperfusion cardiac mitochondrial function and redox balance in chronically stressed rats. Response of VO2max to dark chocolate consumption in healthy subjects: A systematic review and meta-analysis of randomized controlled trials. Cardiac energy metabolism is decreased in male volunteers with prediabetes and does not normalize during the day. Examining discordance in spirometry reference equations: A retrospective study. Acute sympathetic activation blunts the hyperemic and vasodilatory response to passive leg movement in young healthy males.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1