[Regulatory roles of JAZ in the growth and development of horticultural plants].

Q4 Biochemistry, Genetics and Molecular Biology Sheng wu gong cheng xue bao = Chinese journal of biotechnology Pub Date : 2025-02-25 DOI:10.13345/j.cjb.240547
Xinxin Zhang, Tao Tao, Hangchun Li, Zhi Qiao, Qinglin Tang, Dayong Wei, Yang Yang, Zhimin Wang
{"title":"[Regulatory roles of JAZ in the growth and development of horticultural plants].","authors":"Xinxin Zhang, Tao Tao, Hangchun Li, Zhi Qiao, Qinglin Tang, Dayong Wei, Yang Yang, Zhimin Wang","doi":"10.13345/j.cjb.240547","DOIUrl":null,"url":null,"abstract":"<p><p>Jasmonic acid (JA) is a common plant hormone with regulatory effects on plant growth and development. The jasmonate ZIM-domain (JAZ) proteins (JAZs), as key regulators in the JA signaling pathway, are involved in multiple biological processes such as anthocyanin accumulation, flowering time modulation, and secondary metabolite synthesis in plants. JAZs are essential components of many regulatory signaling networks. The <i>JAZ</i> genes, members of the plant-specific TIFY family, have been identified in the genomes of a variety of horticultural plants. Here, we summarized the research progress in the roles of JAZs in horticultural plants, aiming to give insights into the further study of the biological functions and regulatory networks of <i>JAZ</i> genes in plants.</p>","PeriodicalId":21778,"journal":{"name":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","volume":"41 2","pages":"530-545"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sheng wu gong cheng xue bao = Chinese journal of biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13345/j.cjb.240547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Jasmonic acid (JA) is a common plant hormone with regulatory effects on plant growth and development. The jasmonate ZIM-domain (JAZ) proteins (JAZs), as key regulators in the JA signaling pathway, are involved in multiple biological processes such as anthocyanin accumulation, flowering time modulation, and secondary metabolite synthesis in plants. JAZs are essential components of many regulatory signaling networks. The JAZ genes, members of the plant-specific TIFY family, have been identified in the genomes of a variety of horticultural plants. Here, we summarized the research progress in the roles of JAZs in horticultural plants, aiming to give insights into the further study of the biological functions and regulatory networks of JAZ genes in plants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Sheng wu gong cheng xue bao = Chinese journal of biotechnology
Sheng wu gong cheng xue bao = Chinese journal of biotechnology Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
1.50
自引率
0.00%
发文量
298
期刊介绍: Chinese Journal of Biotechnology (Chinese edition) , sponsored by the Institute of Microbiology, Chinese Academy of Sciences and the Chinese Society for Microbiology, is a peer-reviewed international journal. The journal is cited by many scientific databases , such as Chemical Abstract (CA), Biology Abstract (BA), MEDLINE, Russian Digest , Chinese Scientific Citation Index (CSCI), Chinese Journal Citation Report (CJCR), and Chinese Academic Journal (CD version). The Journal publishes new discoveries, techniques and developments in genetic engineering, cell engineering, enzyme engineering, biochemical engineering, tissue engineering, bioinformatics, biochips and other fields of biotechnology.
期刊最新文献
[Advances in genetic engineering and molecular modification of sweet-tasting proteins]. [Arbuscular mycorrhizal fungi improve physiological metabolism and ameliorate root damage of Coleus scutellarioides under cadmium stress]. [Cloning and expression analysis of the laccase gene RcLAC15 from Rosa chinensis]. [Cloning and functional characterization of PhNAL1b from Petunia× hybrida cv. Mitchell Diploid]. [Creation of new glabrous and salt-tolerant rice germplasm along the Yellow River by CRISPR-Cas9-mediated editing of OsSPL10].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1