Matthew Gibb, Angela N Reinert, Troy Schedin, Daniel T Merrick, Jared M Brown, Alison K Bauer
{"title":"Mast Cells are Key Mediators in the Pulmonary Inflammatory Response to Formaldehyde Exposure.","authors":"Matthew Gibb, Angela N Reinert, Troy Schedin, Daniel T Merrick, Jared M Brown, Alison K Bauer","doi":"10.1093/toxsci/kfaf025","DOIUrl":null,"url":null,"abstract":"<p><p>Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high dose FA exposure. Using wild type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to formaldehyde and suggest they could be therapeutic targets for treating FA-induced lung inflammation.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":" ","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfaf025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high dose FA exposure. Using wild type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to formaldehyde and suggest they could be therapeutic targets for treating FA-induced lung inflammation.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.