Fine mapping and identification of causal alleles at the Ur-11 locus controlling rust resistance in common bean (Phaseolus vulgaris L.).

IF 4.4 1区 农林科学 Q1 AGRONOMY Theoretical and Applied Genetics Pub Date : 2025-02-24 DOI:10.1007/s00122-025-04836-9
Mohammad Erfatpour, Kristin J Simons, Jayanta Roy, Jose C Figueroa-Cerna, Rian Lee, James Beaver, Phillip E McClean, Juan M Osorno
{"title":"Fine mapping and identification of causal alleles at the Ur-11 locus controlling rust resistance in common bean (Phaseolus vulgaris L.).","authors":"Mohammad Erfatpour, Kristin J Simons, Jayanta Roy, Jose C Figueroa-Cerna, Rian Lee, James Beaver, Phillip E McClean, Juan M Osorno","doi":"10.1007/s00122-025-04836-9","DOIUrl":null,"url":null,"abstract":"<p><p>The Middle American rust resistance gene Ur-11 present in common bean (Phaseolus vulgaris L.) confers resistance to all but one known race of the pathogen Uromyces appendiculatus (Pers.) Unger. Even though progress has been made in understanding the host-pathogen interactions between common bean and U. appendiculatus, the causal alleles of the majority of rust resistance loci, including Ur-11, remain unknown. A genome-wide association study (GWAS) was conducted to identify genomic regions associated with resistance to the U. appendiculatus race 31-22, which is avirulent to Ur-11 but virulent to other Middle American rust resistance genes. GWAS using genotypic data consisting of approximately 70,959 SNP markers and phenotypic data based on the median reaction type (1-9 scale) of a panel of 357 Middle American breeding lines and cultivars, plus 5 germplasm lines with the Ur-11 locus derived from PI 181996, located Ur-11 on chromosome Pv11. Twenty-seven SNP markers clustered in the 55.16-55.56 Mb region of the P. vulgaris UI111 reference. Multiple DNA sequence alignments detected a missense mutation [c.1,328A > G] in the PvUI111.11G202400 gene model that encodes a leucine-rich repeat-containing protein in response to race 31-22. A PCR allele competitive extension marker (PACE) was developed and tested across a panel of ~ 700 Middle American dry bean genotypes. No recombination event was observed for the PACE marker among the tested genotypes; suggesting that the polymorphism on which it is based is very close to or in the Ur-11 gene. This PACE marker will be a useful and reliable marker for marker-assisted selection of Ur-11-based resistance to bean rust.</p>","PeriodicalId":22955,"journal":{"name":"Theoretical and Applied Genetics","volume":"138 3","pages":"55"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and Applied Genetics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s00122-025-04836-9","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

The Middle American rust resistance gene Ur-11 present in common bean (Phaseolus vulgaris L.) confers resistance to all but one known race of the pathogen Uromyces appendiculatus (Pers.) Unger. Even though progress has been made in understanding the host-pathogen interactions between common bean and U. appendiculatus, the causal alleles of the majority of rust resistance loci, including Ur-11, remain unknown. A genome-wide association study (GWAS) was conducted to identify genomic regions associated with resistance to the U. appendiculatus race 31-22, which is avirulent to Ur-11 but virulent to other Middle American rust resistance genes. GWAS using genotypic data consisting of approximately 70,959 SNP markers and phenotypic data based on the median reaction type (1-9 scale) of a panel of 357 Middle American breeding lines and cultivars, plus 5 germplasm lines with the Ur-11 locus derived from PI 181996, located Ur-11 on chromosome Pv11. Twenty-seven SNP markers clustered in the 55.16-55.56 Mb region of the P. vulgaris UI111 reference. Multiple DNA sequence alignments detected a missense mutation [c.1,328A > G] in the PvUI111.11G202400 gene model that encodes a leucine-rich repeat-containing protein in response to race 31-22. A PCR allele competitive extension marker (PACE) was developed and tested across a panel of ~ 700 Middle American dry bean genotypes. No recombination event was observed for the PACE marker among the tested genotypes; suggesting that the polymorphism on which it is based is very close to or in the Ur-11 gene. This PACE marker will be a useful and reliable marker for marker-assisted selection of Ur-11-based resistance to bean rust.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
7.40%
发文量
241
审稿时长
2.3 months
期刊介绍: Theoretical and Applied Genetics publishes original research and review articles in all key areas of modern plant genetics, plant genomics and plant biotechnology. All work needs to have a clear genetic component and significant impact on plant breeding. Theoretical considerations are only accepted in combination with new experimental data and/or if they indicate a relevant application in plant genetics or breeding. Emphasizing the practical, the journal focuses on research into leading crop plants and articles presenting innovative approaches.
期刊最新文献
Fine mapping and identification of causal alleles at the Ur-11 locus controlling rust resistance in common bean (Phaseolus vulgaris L.). Genetic mapping and transcriptome profiling revealed leaf lobe formation and leaf size are regulated by GhRl4 in Gossypium hirsutum L. Identification by GWAS of marker haplotypes relevant to breed potato for Globodera pallida resistance. Knocking out artificially selected gene GmAOC4H8 improves germination in soybean. A wild-allele GsPP2C-51-a1 enhances tolerance to drought stress in soybean and Arabidopsis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1