AI for image quality and patient safety in CT and MRI.

IF 3.7 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING European Radiology Experimental Pub Date : 2025-02-23 DOI:10.1186/s41747-025-00562-5
Luca Melazzini, Chandra Bortolotto, Leonardo Brizzi, Marina Achilli, Nicoletta Basla, Alessandro D'Onorio De Meo, Alessia Gerbasi, Olivia Maria Bottinelli, Riccardo Bellazzi, Lorenzo Preda
{"title":"AI for image quality and patient safety in CT and MRI.","authors":"Luca Melazzini, Chandra Bortolotto, Leonardo Brizzi, Marina Achilli, Nicoletta Basla, Alessandro D'Onorio De Meo, Alessia Gerbasi, Olivia Maria Bottinelli, Riccardo Bellazzi, Lorenzo Preda","doi":"10.1186/s41747-025-00562-5","DOIUrl":null,"url":null,"abstract":"<p><p>Substantial endeavors have been recently dedicated to developing artificial intelligence (AI) solutions, especially deep learning-based, tailored to enhance radiological procedures, in particular algorithms designed to minimize radiation exposure and enhance image clarity. Thus, not only better diagnostic accuracy but also reduced potential harm to patients was pursued, thereby exemplifying the intersection of technological innovation and the highest standards of patient care. We provide herein an overview of recent AI developments in computed tomography and magnetic resonance imaging. Major AI results in CT regard: optimization of patient positioning, scan range selection (avoiding \"overscanning\"), and choice of technical parameters; reduction of the amount of injected contrast agent and injection flow rate (also avoiding extravasation); faster and better image reconstruction reducing noise level and artifacts. Major AI results in MRI regard: reconstruction of undersampled images; artifact removal, including those derived from unintentional patient's (or fetal) movement or from heart motion; up to 80-90% reduction of GBCA dose. Challenges include limited generalizability, lack of external validation, insufficient explainability of models, and opacity of decision-making. Developing explainable AI algorithms that provide transparent and interpretable outputs is essential to enable seamless AI integration into CT and MRI practice. RELEVANCE STATEMENT: This review highlights how AI-driven advancements in CT and MRI improve image quality and enhance patient safety by leveraging AI solutions for dose reduction, contrast optimization, noise reduction, and efficient image reconstruction, paving the way for safer, faster, and more accurate diagnostic imaging practices. KEY POINTS: Advancements in AI are revolutionizing the way radiological images are acquired, reconstructed, and interpreted. AI algorithms can assist in optimizing radiation doses, reducing scan times, and enhancing image quality. AI techniques are paving the way for a future of more efficient, accurate, and safe medical imaging examinations.</p>","PeriodicalId":36926,"journal":{"name":"European Radiology Experimental","volume":"9 1","pages":"28"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11847764/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Radiology Experimental","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s41747-025-00562-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Substantial endeavors have been recently dedicated to developing artificial intelligence (AI) solutions, especially deep learning-based, tailored to enhance radiological procedures, in particular algorithms designed to minimize radiation exposure and enhance image clarity. Thus, not only better diagnostic accuracy but also reduced potential harm to patients was pursued, thereby exemplifying the intersection of technological innovation and the highest standards of patient care. We provide herein an overview of recent AI developments in computed tomography and magnetic resonance imaging. Major AI results in CT regard: optimization of patient positioning, scan range selection (avoiding "overscanning"), and choice of technical parameters; reduction of the amount of injected contrast agent and injection flow rate (also avoiding extravasation); faster and better image reconstruction reducing noise level and artifacts. Major AI results in MRI regard: reconstruction of undersampled images; artifact removal, including those derived from unintentional patient's (or fetal) movement or from heart motion; up to 80-90% reduction of GBCA dose. Challenges include limited generalizability, lack of external validation, insufficient explainability of models, and opacity of decision-making. Developing explainable AI algorithms that provide transparent and interpretable outputs is essential to enable seamless AI integration into CT and MRI practice. RELEVANCE STATEMENT: This review highlights how AI-driven advancements in CT and MRI improve image quality and enhance patient safety by leveraging AI solutions for dose reduction, contrast optimization, noise reduction, and efficient image reconstruction, paving the way for safer, faster, and more accurate diagnostic imaging practices. KEY POINTS: Advancements in AI are revolutionizing the way radiological images are acquired, reconstructed, and interpreted. AI algorithms can assist in optimizing radiation doses, reducing scan times, and enhancing image quality. AI techniques are paving the way for a future of more efficient, accurate, and safe medical imaging examinations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Radiology Experimental
European Radiology Experimental Medicine-Radiology, Nuclear Medicine and Imaging
CiteScore
6.70
自引率
2.60%
发文量
56
审稿时长
18 weeks
期刊最新文献
Deep learning-based Intraoperative MRI reconstruction. AI for image quality and patient safety in CT and MRI. 3D cinematic reconstructions of cardiovascular CT presented in augmented reality: subjective assessment of clinical feasibility and potential use cases. Contrast-enhanced photon-counting detector CT for discriminating local recurrence from postoperative changes after resection of pancreatic ductal adenocarcinoma. Mapping of prostate cancer microvascular patterns using super-resolution ultrasound imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1