Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.

IF 2.3 3区 医学 Q3 CLINICAL NEUROLOGY Brain Topography Pub Date : 2025-02-24 DOI:10.1007/s10548-025-01106-1
Shraddha Jain, Rajeev Srivastava
{"title":"Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis.","authors":"Shraddha Jain, Rajeev Srivastava","doi":"10.1007/s10548-025-01106-1","DOIUrl":null,"url":null,"abstract":"<p><p>Neurological disorders are a major global health concern that have a substantial impact on death rates and quality of life. accurately identifying a number of diseases Due to inherent data uncertainties and Electroencephalogram (EEG) pattern overlap, conventional EEG diagnosis methods frequently encounter difficulties. This paper proposes a novel framework that integrates FLSNN to enhance the accuracy and robustness of multiple neurological disorder disease detection from EEG signals. In multiple neurological disorders, the primary motivation is to overcome the limitations of existing methods that are unable to handle the complex and overlapping nature of EEG signals. The key aim is to provide a unified, automated solution for detecting multiple neurological disorders such as epilepsy, Parkinson's, Alzheimer's, schizophrenia, and stroke in a single framework. In the Fuzzy Logic and Spiking Neural Networks (FLSNN) framework, EEG data is preprocessed to eliminate noise and artifacts, while a fuzzy logic model is applied to handling uncertainties prior to applying spike neural networking to analyze the temporal and dynamics of the signals. Processes EEG data three times faster than traditional techniques. This framework achieves 97.46% accuracy in binary classification and 98.87% accuracy in multi-class classification, indicating increased efficiency. This research provides a significant advancement in the diagnosis of multiple neurological disorders using EEG and enhances both the quality and speed of diagnostics from the EEG signal and the advancement of AI-based medical diagnostics. at https://github.com/jainshraddha12/FLSNN , the source code will be available to the public.</p>","PeriodicalId":55329,"journal":{"name":"Brain Topography","volume":"38 3","pages":"33"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain Topography","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s10548-025-01106-1","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurological disorders are a major global health concern that have a substantial impact on death rates and quality of life. accurately identifying a number of diseases Due to inherent data uncertainties and Electroencephalogram (EEG) pattern overlap, conventional EEG diagnosis methods frequently encounter difficulties. This paper proposes a novel framework that integrates FLSNN to enhance the accuracy and robustness of multiple neurological disorder disease detection from EEG signals. In multiple neurological disorders, the primary motivation is to overcome the limitations of existing methods that are unable to handle the complex and overlapping nature of EEG signals. The key aim is to provide a unified, automated solution for detecting multiple neurological disorders such as epilepsy, Parkinson's, Alzheimer's, schizophrenia, and stroke in a single framework. In the Fuzzy Logic and Spiking Neural Networks (FLSNN) framework, EEG data is preprocessed to eliminate noise and artifacts, while a fuzzy logic model is applied to handling uncertainties prior to applying spike neural networking to analyze the temporal and dynamics of the signals. Processes EEG data three times faster than traditional techniques. This framework achieves 97.46% accuracy in binary classification and 98.87% accuracy in multi-class classification, indicating increased efficiency. This research provides a significant advancement in the diagnosis of multiple neurological disorders using EEG and enhances both the quality and speed of diagnostics from the EEG signal and the advancement of AI-based medical diagnostics. at https://github.com/jainshraddha12/FLSNN , the source code will be available to the public.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Brain Topography
Brain Topography 医学-临床神经学
CiteScore
4.70
自引率
7.40%
发文量
41
审稿时长
3 months
期刊介绍: Brain Topography publishes clinical and basic research on cognitive neuroscience and functional neurophysiology using the full range of imaging techniques including EEG, MEG, fMRI, TMS, diffusion imaging, spectroscopy, intracranial recordings, lesion studies, and related methods. Submissions combining multiple techniques are particularly encouraged, as well as reports of new and innovative methodologies.
期刊最新文献
Stable EEG Spatiospectral Patterns Estimated in Individuals by Group Information Guided NMF. An Efficient Approach for Detection of Various Epileptic Waves Having Diverse Forms in Long Term EEG Based on Deep Learning. Does the Cortical-Depth Dependence of the Hemodynamic Response Function Differ Between Age Groups? Electroencephalogram (EEG) Based Fuzzy Logic and Spiking Neural Networks (FLSNN) for Advanced Multiple Neurological Disorder Diagnosis. Efficient Neural Network Classification of Parkinson's Disease and Schizophrenia Using Resting-State EEG Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1