Closed-Loop Recyclable Solid-State Polymer Electrolytes Enabled by Reversible Lithium Salt Catalysis

IF 14.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of the American Chemical Society Pub Date : 2025-02-24 DOI:10.1021/jacs.4c17035
Pei Chen, Shunjie Liu, Hao Zhou, Shuo Yan, Dongxuan Zhang, Xuan Pang, Xuesi Chen, Xianhong Wang
{"title":"Closed-Loop Recyclable Solid-State Polymer Electrolytes Enabled by Reversible Lithium Salt Catalysis","authors":"Pei Chen, Shunjie Liu, Hao Zhou, Shuo Yan, Dongxuan Zhang, Xuan Pang, Xuesi Chen, Xianhong Wang","doi":"10.1021/jacs.4c17035","DOIUrl":null,"url":null,"abstract":"The rapid expansion in lithium battery production and disposal presents considerable sustainability challenges, emphasizing the critical need for recycling. However, current methods predominantly focus on metals from cathodes, while electrolytes have rarely been recycled. Here, we propose an innovative closed-loop design for solid polymer electrolytes (SPEs), enabled by reversible catalysis of lithium bis(trifluoromethane) sulfonimide (LiTFSI) in both polymerization and depolymerization. The formation of a hydrogen-bonded adduct between TFSI<sup>–</sup> and alcohol initiates the in situ ring-opening polymerization of Li<sup>+</sup>-activated trimethylene carbonate (TMC), generating well-defined SPEs. With delicate structural optimization, the SPE achieves an outstanding ionic conductivity of 1.62 × 10<sup>–3</sup> S cm<sup>–1</sup> at room temperature with robust high-voltage stability up to 4.7 V. The assembled Li||NCM811 demonstrates promising cycling stability with 88% capacity retention over 100 cycles. Upon end-of-life, LiTFSI facilitates selective depolymerization of the polycarbonate-based SPE at 180 °C without introducing external catalysts, recovering both TMC monomer (&gt;90%) and LiTFSI (&gt;98%) for reuse. This work highlights a significant advance in closed-loop recyclable SPEs and a vital step toward sustainable lithium battery technology.","PeriodicalId":49,"journal":{"name":"Journal of the American Chemical Society","volume":"17 1","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Chemical Society","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/jacs.4c17035","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The rapid expansion in lithium battery production and disposal presents considerable sustainability challenges, emphasizing the critical need for recycling. However, current methods predominantly focus on metals from cathodes, while electrolytes have rarely been recycled. Here, we propose an innovative closed-loop design for solid polymer electrolytes (SPEs), enabled by reversible catalysis of lithium bis(trifluoromethane) sulfonimide (LiTFSI) in both polymerization and depolymerization. The formation of a hydrogen-bonded adduct between TFSI and alcohol initiates the in situ ring-opening polymerization of Li+-activated trimethylene carbonate (TMC), generating well-defined SPEs. With delicate structural optimization, the SPE achieves an outstanding ionic conductivity of 1.62 × 10–3 S cm–1 at room temperature with robust high-voltage stability up to 4.7 V. The assembled Li||NCM811 demonstrates promising cycling stability with 88% capacity retention over 100 cycles. Upon end-of-life, LiTFSI facilitates selective depolymerization of the polycarbonate-based SPE at 180 °C without introducing external catalysts, recovering both TMC monomer (>90%) and LiTFSI (>98%) for reuse. This work highlights a significant advance in closed-loop recyclable SPEs and a vital step toward sustainable lithium battery technology.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
24.40
自引率
6.00%
发文量
2398
审稿时长
1.6 months
期刊介绍: The flagship journal of the American Chemical Society, known as the Journal of the American Chemical Society (JACS), has been a prestigious publication since its establishment in 1879. It holds a preeminent position in the field of chemistry and related interdisciplinary sciences. JACS is committed to disseminating cutting-edge research papers, covering a wide range of topics, and encompasses approximately 19,000 pages of Articles, Communications, and Perspectives annually. With a weekly publication frequency, JACS plays a vital role in advancing the field of chemistry by providing essential research.
期刊最新文献
Issue Editorial Masthead Issue Publication Information Optical Spin Hall Effect Pattern Switching in Polariton Condensates in Organic Single-Crystal Microbelts Regiodivergent Alkylation of Pyridines: Alkyllithium Clusters Direct Chemical Reactivity Ring-Expansion Metathesis Polymerization under Confinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1