Chao Xu;Christos Masouros;Shinya Sugiura;Periklis Petropoulos;Robert G. Maunder;Lie-Liang Yang;Harald Haas;Lajos Hanzo
{"title":"Integrated Positioning and Communication Relying on Wireless Optical OFDM","authors":"Chao Xu;Christos Masouros;Shinya Sugiura;Periklis Petropoulos;Robert G. Maunder;Lie-Liang Yang;Harald Haas;Lajos Hanzo","doi":"10.1109/JSAC.2025.3543532","DOIUrl":null,"url":null,"abstract":"Visible Light Positioning and Communication (VLPC) is a promising candidate for implementing Integrated Sensing And Communication (ISAC) in the unlicensed 400 THz to 800 THz band. The current Visible Light Positioning (VLP) systems mainly operate based on the Received Signal Strength (RSS) of the Line-of-Sight (LoS) path. However, its accuracy is degraded by interferences from Non-LoS (NLoS) paths. Furthermore, in Visible Light Communication (VLC) systems, the estimation of Channel State Information (CSI) also becomes challenging, when the optical channel becomes dispersive. Against this background, we propose a new VLPC scheme using Direct Current (DC) biased Optical Orthogonal Frequency-Division Multiplexing (VLPC-DCO-OFDM), where OFDM-based sensing is applied for the sake of improving the resolution of the estimated Channel Impulse Response (CIRs) exploited for positioning functionality. The CIRs estimated by sensing are further exploited to provide enhanced CSI for communication data detection. Moreover, we propose a hybrid Radar-RSS based solution, where the conventional RSS-aided VLP method is invoked for the sake of refining OFDM radar. Our simulation results demonstrate that the proposed VLPC-DCO-OFDM scheme – which simultaneously supports the triple functionalities of illumination, bi-static sensing and communication – is capable of achieving centimeter-level positioning accuracy and Giga-bits-per-second data rate.","PeriodicalId":73294,"journal":{"name":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","volume":"43 5","pages":"1721-1737"},"PeriodicalIF":17.2000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE journal on selected areas in communications : a publication of the IEEE Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10900727/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Visible Light Positioning and Communication (VLPC) is a promising candidate for implementing Integrated Sensing And Communication (ISAC) in the unlicensed 400 THz to 800 THz band. The current Visible Light Positioning (VLP) systems mainly operate based on the Received Signal Strength (RSS) of the Line-of-Sight (LoS) path. However, its accuracy is degraded by interferences from Non-LoS (NLoS) paths. Furthermore, in Visible Light Communication (VLC) systems, the estimation of Channel State Information (CSI) also becomes challenging, when the optical channel becomes dispersive. Against this background, we propose a new VLPC scheme using Direct Current (DC) biased Optical Orthogonal Frequency-Division Multiplexing (VLPC-DCO-OFDM), where OFDM-based sensing is applied for the sake of improving the resolution of the estimated Channel Impulse Response (CIRs) exploited for positioning functionality. The CIRs estimated by sensing are further exploited to provide enhanced CSI for communication data detection. Moreover, we propose a hybrid Radar-RSS based solution, where the conventional RSS-aided VLP method is invoked for the sake of refining OFDM radar. Our simulation results demonstrate that the proposed VLPC-DCO-OFDM scheme – which simultaneously supports the triple functionalities of illumination, bi-static sensing and communication – is capable of achieving centimeter-level positioning accuracy and Giga-bits-per-second data rate.