{"title":"A Superionic Conductor Lithium Argyrodite Sulfide of Li7–x(GeSi)(1–x)/2SbxS5I toward All-Solid-State Lithium-Ion Batteries","authors":"Yuxin Ma, Daokuan Jin, Haodong Shi, Rui Li, Yutao Niu, Yunyun Xu, Cong Dong, Yangyang Liu, Rui Yang, Guiming Zhong, Chunyang Wang, Zhizhen Zhang, Zhangquan Peng, Zhong-Shuai Wu","doi":"10.1021/acsenergylett.4c03115","DOIUrl":null,"url":null,"abstract":"Li<sub>6</sub>PS<sub>5</sub>I based solid-state electrolytes (SSEs) show promising interface compatibility for all-solid-state batteries (ASSBs), but they still suffer from limited ionic conductivity. Herein, a superionic conductor lithium argyrodite sulfide, Li<sub>7–<i>x</i></sub>(GeSi)<sub>(1–<i>x</i>)/2</sub>Sb<sub><i>x</i></sub>S<sub>5</sub>I, was developed through multi-cation substitution of Ge, Si, and Sb for P, increasing configurational entropy of the Li<sub>6</sub>PS<sub>5</sub>I. This approach enhanced Li<sup>+</sup> content and anion site disorder, leading to a low activation energy of 0.17 eV for Li<sup>+</sup> migration, and consequently a high cold-pressed ionic conductivity of 12.7 mS cm<sup>–1</sup>, and a record value of 32.2 mS cm<sup>–1</sup> after hot-pressing. When incorporating Li<sub>3</sub>InCl<sub>6</sub> as the catholyte and interlayer, the LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>@Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>3</sub>InCl<sub>6</sub>|Li<sub>20/3</sub>(GeSiSb)<sub>1/3</sub>S<sub>5</sub>I|Li-In ASSBs exhibited a high capacity of 219 mAh g<sup>–1</sup> at 0.1 C, and a notable capacity of 135 mAh g<sup>–1</sup> with 84.4% retention at 1 C after 550 cycles. Our ASSBs demonstrated stable cycling across −20 to 60 °C and operated well at an ultrahigh cathode loading of 100 mg cm<sup>–2</sup>. These findings advance sulfide SSEs for high-performance and wide-temperature ASSBs.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"3 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03115","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Li6PS5I based solid-state electrolytes (SSEs) show promising interface compatibility for all-solid-state batteries (ASSBs), but they still suffer from limited ionic conductivity. Herein, a superionic conductor lithium argyrodite sulfide, Li7–x(GeSi)(1–x)/2SbxS5I, was developed through multi-cation substitution of Ge, Si, and Sb for P, increasing configurational entropy of the Li6PS5I. This approach enhanced Li+ content and anion site disorder, leading to a low activation energy of 0.17 eV for Li+ migration, and consequently a high cold-pressed ionic conductivity of 12.7 mS cm–1, and a record value of 32.2 mS cm–1 after hot-pressing. When incorporating Li3InCl6 as the catholyte and interlayer, the LiNi0.8Co0.1Mn0.1O2@Li3InCl6|Li3InCl6|Li20/3(GeSiSb)1/3S5I|Li-In ASSBs exhibited a high capacity of 219 mAh g–1 at 0.1 C, and a notable capacity of 135 mAh g–1 with 84.4% retention at 1 C after 550 cycles. Our ASSBs demonstrated stable cycling across −20 to 60 °C and operated well at an ultrahigh cathode loading of 100 mg cm–2. These findings advance sulfide SSEs for high-performance and wide-temperature ASSBs.
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍:
ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format.
ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology.
The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.