Anharmonicity-induced thermal rectification of a single diblock molecular junction inspired by the Aviram–Ratner diode†

IF 5.1 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2025-02-25 DOI:10.1039/D4NR04716H
Hisao Nakamura and Naoyuki Karasawa
{"title":"Anharmonicity-induced thermal rectification of a single diblock molecular junction inspired by the Aviram–Ratner diode†","authors":"Hisao Nakamura and Naoyuki Karasawa","doi":"10.1039/D4NR04716H","DOIUrl":null,"url":null,"abstract":"<p >We examined the design of a unimolecular thermal diode inspired by the concept of the Aviram–Ratner diode and analyzed the anharmonic effects of molecular vibrations in the junction on heat transport. Our central idea involves (i) reconfiguring the electron donor and acceptor into “phonon scatter-rich” (strong anharmonicity) and “phonon scatter-deficient” (weak anharmonicity) moieties and (ii) using hydrogen bonds as thermal spacers to prevent nonlocal anharmonic effects on the thermal transport channel. To evaluate the effects of anharmonic interactions, we developed a fictitious electrode model combined with nonequilibrium Green's function theory and then performed thermal transport calculations. Our results indicate that hydrogen bonds are very promising for constructing thermal molecular device materials. Reducing the thermal gradient and mitigating inelastic phonon scattering effects at the interface are critical for increasing the rectification ratio in single molecular junctions.</p>","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":" 12","pages":" 7402-7411"},"PeriodicalIF":5.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/nr/d4nr04716h","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We examined the design of a unimolecular thermal diode inspired by the concept of the Aviram–Ratner diode and analyzed the anharmonic effects of molecular vibrations in the junction on heat transport. Our central idea involves (i) reconfiguring the electron donor and acceptor into “phonon scatter-rich” (strong anharmonicity) and “phonon scatter-deficient” (weak anharmonicity) moieties and (ii) using hydrogen bonds as thermal spacers to prevent nonlocal anharmonic effects on the thermal transport channel. To evaluate the effects of anharmonic interactions, we developed a fictitious electrode model combined with nonequilibrium Green's function theory and then performed thermal transport calculations. Our results indicate that hydrogen bonds are very promising for constructing thermal molecular device materials. Reducing the thermal gradient and mitigating inelastic phonon scattering effects at the interface are critical for increasing the rectification ratio in single molecular junctions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
受艾维兰-拉特纳二极管启发的单双块分子结的非调和诱导热整流
我们研究了受Aviram-Ratner二极管概念启发的单分子热二极管的设计,并分析了结中分子振动对热输运的非调和效应。我们的中心思想包括(i)将电子供体和受体重新配置为“声子散射丰富”(强非调和性)和“声子散射缺乏”(弱非调和性)的部分,以及(ii)使用氢键作为热间隔以防止热传输通道上的非局部非调和效应。为了评估非调和相互作用的影响,我们结合非平衡格林函数理论建立了一个虚构的电极模型,然后进行了热输运计算。我们的研究结果表明,氢键在构建热分子器件材料方面是非常有前途的。减小热梯度和减轻界面处的非弹性声子散射效应是提高单分子结整流比的关键。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Glycosylated Carbon Nanodots as Multivalent Blockers of Lectin-Driven Viral Entry: Structural Insights and Antiviral Performance Switching on SERS from SERS-Inactive Substrates through Simple Electrodeposition Guided by Defective Molecular Layer Unveiling the underlying physical mechanisms of inverted perovskite solar cells Challenges and strategies for enhancing surface stability of high-nickel layered oxide cathodes for lithium-ion batteries Optically active defect states and valley depolarization in monolayer MoS2 induced by high-energy electron beam irradiation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1