{"title":"Network Flow Methods for NMR-Based Compound Identification","authors":"Leonhard Lücken, Nico Mitschke, Thorsten Dittmar, Bernd Blasius","doi":"10.1021/acs.analchem.4c01652","DOIUrl":null,"url":null,"abstract":"In this work, we introduce a novel method for compound identification in mixtures based on nuclear magnetic resonance spectra. Contrary to many other methods, our approach can be used without peak-picking the mixture spectrum and simultaneously optimizes the fit of all individual compound spectra in a given library. At the core of the method, a minimum cost flow problem is solved on a network consisting of nodes that represent spectral peaks of the library compounds and the mixture. We show that our approach can outperform other popular algorithms by applying it to a standard compound identification task for 2D <sup>1</sup>H,<sup>13</sup>C HSQC spectra of artificial mixtures and a natural sample using a library of 501 compounds. Moreover, our method retrieves individual compound concentrations with at least semiquantitative accuracy for artificial mixtures with up to 34 compounds. A software implementation of the minimum cost flow method is available on GitHub (https://github.com/GeoMetabolomics-ICBM/mcfNMR).","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"3 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c01652","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we introduce a novel method for compound identification in mixtures based on nuclear magnetic resonance spectra. Contrary to many other methods, our approach can be used without peak-picking the mixture spectrum and simultaneously optimizes the fit of all individual compound spectra in a given library. At the core of the method, a minimum cost flow problem is solved on a network consisting of nodes that represent spectral peaks of the library compounds and the mixture. We show that our approach can outperform other popular algorithms by applying it to a standard compound identification task for 2D 1H,13C HSQC spectra of artificial mixtures and a natural sample using a library of 501 compounds. Moreover, our method retrieves individual compound concentrations with at least semiquantitative accuracy for artificial mixtures with up to 34 compounds. A software implementation of the minimum cost flow method is available on GitHub (https://github.com/GeoMetabolomics-ICBM/mcfNMR).
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.