Dual-Function Strategy for Enhanced Quercetin Detection Using Terbium(III) Ion-Bound Gold Nanoclusters

IF 6.7 1区 化学 Q1 CHEMISTRY, ANALYTICAL Analytical Chemistry Pub Date : 2025-02-25 DOI:10.1021/acs.analchem.4c06529
Kai-Yuan Huang, Yan-Yan Chen, Zhi-Qiang Yang, Yan-Ping Pan, Jun Xie, Wei Chen, Hao-Hua Deng
{"title":"Dual-Function Strategy for Enhanced Quercetin Detection Using Terbium(III) Ion-Bound Gold Nanoclusters","authors":"Kai-Yuan Huang, Yan-Yan Chen, Zhi-Qiang Yang, Yan-Ping Pan, Jun Xie, Wei Chen, Hao-Hua Deng","doi":"10.1021/acs.analchem.4c06529","DOIUrl":null,"url":null,"abstract":"The engineering of metal nanoclusters (NCs) that exhibit bright emissions and high sensing performance under physiological conditions is still a formidable challenge. In this study, we report a novel design strategy for realizing excellent performance metal NC-based probes by leveraging both concerted proton-coupled electron transfer (PCET) and photoinduced electron transfer (PET) mechanisms, with terbium(III) (Tb<sup>3+</sup>) ions serving as a key modulator. Our findings indicate that the binding of Tb<sup>3+</sup> ions to the 6-aza-2-thiothymidine (ATT) ligand effectively inhibits the proton-transfer step in the concerted PCET pathway of Au<sub>10</sub>(ATT)<sub>6</sub> NCs, giving rise to over a 10-fold enhancement in fluorescence and a quantum yield of 7.2%. Moreover, the capped Tb<sup>3+</sup> ions on the surface of Au<sub>10</sub>(ATT)<sub>6</sub> NCs can act as a bridge to facilitate an efficient donor-linker-acceptor type PET reaction from quercetin (Que) to the excited Au<sub>10</sub> core by specifically interacting with the bare 3-OH group. These advancements enable the Tb<sup>3+</sup>/Au<sub>10</sub>(ATT)<sub>6</sub> NC-based probe to achieve a significantly lower limit of detection for Que, reduced by nearly 3 orders of magnitude to 2.6 nM, while also addressing the critical difficulty of selectively detecting Que in the presence of its glycosylated analogues. This work opens new opportunities for the precise control of photoluminescence in metal NC probes at the molecular level, potentially promoting the development of next-generation metal NC-based sensing technologies.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"53 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c06529","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The engineering of metal nanoclusters (NCs) that exhibit bright emissions and high sensing performance under physiological conditions is still a formidable challenge. In this study, we report a novel design strategy for realizing excellent performance metal NC-based probes by leveraging both concerted proton-coupled electron transfer (PCET) and photoinduced electron transfer (PET) mechanisms, with terbium(III) (Tb3+) ions serving as a key modulator. Our findings indicate that the binding of Tb3+ ions to the 6-aza-2-thiothymidine (ATT) ligand effectively inhibits the proton-transfer step in the concerted PCET pathway of Au10(ATT)6 NCs, giving rise to over a 10-fold enhancement in fluorescence and a quantum yield of 7.2%. Moreover, the capped Tb3+ ions on the surface of Au10(ATT)6 NCs can act as a bridge to facilitate an efficient donor-linker-acceptor type PET reaction from quercetin (Que) to the excited Au10 core by specifically interacting with the bare 3-OH group. These advancements enable the Tb3+/Au10(ATT)6 NC-based probe to achieve a significantly lower limit of detection for Que, reduced by nearly 3 orders of magnitude to 2.6 nM, while also addressing the critical difficulty of selectively detecting Que in the presence of its glycosylated analogues. This work opens new opportunities for the precise control of photoluminescence in metal NC probes at the molecular level, potentially promoting the development of next-generation metal NC-based sensing technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Analytical Chemistry
Analytical Chemistry 化学-分析化学
CiteScore
12.10
自引率
12.20%
发文量
1949
审稿时长
1.4 months
期刊介绍: Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.
期刊最新文献
Profiling of Biofluid Metabolites with a Kinetically Differentiated Binary Biosensing Platform Integrating FT-ICR MS and Machine Learning to Forecast Acid Content Across Boiling Cuts Optimization of the Entropy-Based Wavelet Method for Removing Strong RF and AC Interferences in a Charge Detection Linear Ion Trap Mass Spectrometer Single-Use Electrochemical Aptamer-Based Sensors for Calibration-Free Measurements in Human Saliva via Dual-Frequency Approaches: Prospects and Challenges GLASSR-Net: Glass Substrate Spectral Restoration Neural Network for Fourier Transform Infrared Microspectroscopy in the Fingerprint Region
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1