Prognostic power of radiomics in head and neck cancers: Insights from a meta-analysis

IF 4.9 2区 医学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Computer methods and programs in biomedicine Pub Date : 2025-02-19 DOI:10.1016/j.cmpb.2025.108683
Ting-Wei Wang , Chih-Keng Wang , Jia-Sheng Hong , Yi-Hui Lin , Shi-Yao Wang , Chia-Fung Lu , Yu-Te Wu
{"title":"Prognostic power of radiomics in head and neck cancers: Insights from a meta-analysis","authors":"Ting-Wei Wang ,&nbsp;Chih-Keng Wang ,&nbsp;Jia-Sheng Hong ,&nbsp;Yi-Hui Lin ,&nbsp;Shi-Yao Wang ,&nbsp;Chia-Fung Lu ,&nbsp;Yu-Te Wu","doi":"10.1016/j.cmpb.2025.108683","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Prognostic modeling in head and neck cancers (HNC) has advanced with the integration of clinical factors and radiomic data from CT and MRI scans. However, previous reviews have not systematically evaluated the predictive performance of these models across different oncological endpoints or assessed factors affecting their generalizability. This study aims to fill this gap by providing a comprehensive analysis of prognostic models in HNC.</div></div><div><h3>Methods</h3><div>Our systematic review and meta-analysis sourced data from PubMed, Embase, and Web of Science until August 30, 2023, shortlisting 16 studies. We concentrated on studies detailing HNC prognosis prediction through radiomics, which transparently tabulated performance metrics of c-index and utilized external validation sets. We excluded studies employing imaging techniques other than CT or MRI. Study quality was assessed using the QUIPS and RQS tools. Our meta-analysis comprised the radiomics prognosis model on all validation datasets, overall survival prediction with radiomics on all validation datasets, and overall survival prediction integrating clinical and radiomics data on external validation sets. All assessments adopted a random effects model. The research has been registered under CRD42023459049.</div></div><div><h3>Results</h3><div>When evaluating by distinct endpoints, marked differences were observed. Delving deeper into the complexities of overall survival prediction, variables such as incorporation of clinical features and an enlarged training set were identified as major enhancers of the model's performance. Evaluating exclusively on external validation cohorts, purely clinical models demonstrated a prognostic strength of pooled 0.69 c-index for overall survival, in contrast to the 0.68 pooled c-index achieved by models rooted in radiomics. Combining both approaches elevated the pooled c-index to 0.76. It was clear that a blend of an expanded training dataset and features selected, coupled with the diversity in CT and MRI equipment and model counts, are pivotal in fortifying the model's resilience.</div></div><div><h3>Conclusion</h3><div>This systematic review and meta-analysis demonstrate that combining clinical and radiomic features significantly improves the predictive performance of prognostic models for overall survival in HNC. By systematically evaluating various endpoints and identifying key factors influencing model generalizability, our study fills a critical gap in the literature. These findings provide valuable insights for developing more accurate and personalized prognostic tools in HNC, guiding future research and enhancing clinical decision-making.</div></div>","PeriodicalId":10624,"journal":{"name":"Computer methods and programs in biomedicine","volume":"262 ","pages":"Article 108683"},"PeriodicalIF":4.9000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169260725001002","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Prognostic modeling in head and neck cancers (HNC) has advanced with the integration of clinical factors and radiomic data from CT and MRI scans. However, previous reviews have not systematically evaluated the predictive performance of these models across different oncological endpoints or assessed factors affecting their generalizability. This study aims to fill this gap by providing a comprehensive analysis of prognostic models in HNC.

Methods

Our systematic review and meta-analysis sourced data from PubMed, Embase, and Web of Science until August 30, 2023, shortlisting 16 studies. We concentrated on studies detailing HNC prognosis prediction through radiomics, which transparently tabulated performance metrics of c-index and utilized external validation sets. We excluded studies employing imaging techniques other than CT or MRI. Study quality was assessed using the QUIPS and RQS tools. Our meta-analysis comprised the radiomics prognosis model on all validation datasets, overall survival prediction with radiomics on all validation datasets, and overall survival prediction integrating clinical and radiomics data on external validation sets. All assessments adopted a random effects model. The research has been registered under CRD42023459049.

Results

When evaluating by distinct endpoints, marked differences were observed. Delving deeper into the complexities of overall survival prediction, variables such as incorporation of clinical features and an enlarged training set were identified as major enhancers of the model's performance. Evaluating exclusively on external validation cohorts, purely clinical models demonstrated a prognostic strength of pooled 0.69 c-index for overall survival, in contrast to the 0.68 pooled c-index achieved by models rooted in radiomics. Combining both approaches elevated the pooled c-index to 0.76. It was clear that a blend of an expanded training dataset and features selected, coupled with the diversity in CT and MRI equipment and model counts, are pivotal in fortifying the model's resilience.

Conclusion

This systematic review and meta-analysis demonstrate that combining clinical and radiomic features significantly improves the predictive performance of prognostic models for overall survival in HNC. By systematically evaluating various endpoints and identifying key factors influencing model generalizability, our study fills a critical gap in the literature. These findings provide valuable insights for developing more accurate and personalized prognostic tools in HNC, guiding future research and enhancing clinical decision-making.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer methods and programs in biomedicine
Computer methods and programs in biomedicine 工程技术-工程:生物医学
CiteScore
12.30
自引率
6.60%
发文量
601
审稿时长
135 days
期刊介绍: To encourage the development of formal computing methods, and their application in biomedical research and medical practice, by illustration of fundamental principles in biomedical informatics research; to stimulate basic research into application software design; to report the state of research of biomedical information processing projects; to report new computer methodologies applied in biomedical areas; the eventual distribution of demonstrable software to avoid duplication of effort; to provide a forum for discussion and improvement of existing software; to optimize contact between national organizations and regional user groups by promoting an international exchange of information on formal methods, standards and software in biomedicine. Computer Methods and Programs in Biomedicine covers computing methodology and software systems derived from computing science for implementation in all aspects of biomedical research and medical practice. It is designed to serve: biochemists; biologists; geneticists; immunologists; neuroscientists; pharmacologists; toxicologists; clinicians; epidemiologists; psychiatrists; psychologists; cardiologists; chemists; (radio)physicists; computer scientists; programmers and systems analysts; biomedical, clinical, electrical and other engineers; teachers of medical informatics and users of educational software.
期刊最新文献
Automatic skull reconstruction by deep learnable symmetry enforcement Convolutional long short-term memory neural network integrated with classifier in classifying type of asynchrony breathing in mechanically ventilated patients Prognostic power of radiomics in head and neck cancers: Insights from a meta-analysis MInfer: Bridging MetaboAnalyst and Jacobian analysis for metabolomic networks In silico tuning of binding selectivity for new SARS-CoV-2 main protease inhibitors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1