The most severe imperfection governs the buckling strength of pressurized multi-defect hemispherical shells

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Mechanics of Materials Pub Date : 2025-02-23 DOI:10.1016/j.mechmat.2025.105295
Fani Derveni, Florian Choquart, Arefeh Abbasi , Dong Yan, Pedro M. Reis
{"title":"The most severe imperfection governs the buckling strength of pressurized multi-defect hemispherical shells","authors":"Fani Derveni,&nbsp;Florian Choquart,&nbsp;Arefeh Abbasi ,&nbsp;Dong Yan,&nbsp;Pedro M. Reis","doi":"10.1016/j.mechmat.2025.105295","DOIUrl":null,"url":null,"abstract":"<div><div>We perform a probabilistic investigation on the effect of systematically removing imperfections on the buckling behavior of pressurized thin, elastic, hemispherical shells containing a distribution of defects. We employ finite element simulations, which were previously validated against experiments, to assess the maximum buckling pressure, as measured by the knockdown factor, of these multi-defect shells. Specifically, we remove fractions of either the least or the most severe imperfections to quantify their influence on the buckling onset. We consider shells with a random distribution of defects whose mean amplitude and standard deviation are systematically explored while, for simplicity, fixing the width of the defect to a characteristic value. Our primary finding is that the most severe imperfection of a multi-defect shell dictates its buckling onset. Notably, shells containing a single imperfection corresponding to the maximum amplitude (the most severe) defect of shells with a distribution of imperfections exhibit an identical knockdown factor to the latter case. Our results suggest a simplified approach to studying the buckling of more realistic multi-defect shells, once their most severe defect has been identified, using a well-characterized single-defect description, akin to the weakest-link setting in extreme-value probabilistic problems.</div></div>","PeriodicalId":18296,"journal":{"name":"Mechanics of Materials","volume":"204 ","pages":"Article 105295"},"PeriodicalIF":3.4000,"publicationDate":"2025-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167663625000572","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We perform a probabilistic investigation on the effect of systematically removing imperfections on the buckling behavior of pressurized thin, elastic, hemispherical shells containing a distribution of defects. We employ finite element simulations, which were previously validated against experiments, to assess the maximum buckling pressure, as measured by the knockdown factor, of these multi-defect shells. Specifically, we remove fractions of either the least or the most severe imperfections to quantify their influence on the buckling onset. We consider shells with a random distribution of defects whose mean amplitude and standard deviation are systematically explored while, for simplicity, fixing the width of the defect to a characteristic value. Our primary finding is that the most severe imperfection of a multi-defect shell dictates its buckling onset. Notably, shells containing a single imperfection corresponding to the maximum amplitude (the most severe) defect of shells with a distribution of imperfections exhibit an identical knockdown factor to the latter case. Our results suggest a simplified approach to studying the buckling of more realistic multi-defect shells, once their most severe defect has been identified, using a well-characterized single-defect description, akin to the weakest-link setting in extreme-value probabilistic problems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanics of Materials
Mechanics of Materials 工程技术-材料科学:综合
CiteScore
7.60
自引率
5.10%
发文量
243
审稿时长
46 days
期刊介绍: Mechanics of Materials is a forum for original scientific research on the flow, fracture, and general constitutive behavior of geophysical, geotechnical and technological materials, with balanced coverage of advanced technological and natural materials, with balanced coverage of theoretical, experimental, and field investigations. Of special concern are macroscopic predictions based on microscopic models, identification of microscopic structures from limited overall macroscopic data, experimental and field results that lead to fundamental understanding of the behavior of materials, and coordinated experimental and analytical investigations that culminate in theories with predictive quality.
期刊最新文献
Editorial Board The most severe imperfection governs the buckling strength of pressurized multi-defect hemispherical shells Higher-order indentation model based on mixture unified gradient with surface elasticity: A theoretical study Necessary conditions for stable equilibrium states of lattice solids based on the Cosserat elasticity theory Impact response of pearlitic steel dominated by ferrite/cementite interface
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1