Hongchen Tan , Kaiqiang Xu , Pingping Tao , Xiuping Liu
{"title":"Adversarial perturbation and defense for generalizable person re-identification","authors":"Hongchen Tan , Kaiqiang Xu , Pingping Tao , Xiuping Liu","doi":"10.1016/j.neunet.2025.107287","DOIUrl":null,"url":null,"abstract":"<div><div>In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model’s ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"186 ","pages":"Article 107287"},"PeriodicalIF":6.0000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608025001662","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the Domain Generalizable Person Re-Identification (DG Re-ID) task, the quality of identity-relevant descriptor is crucial for domain generalization performance. However, for hard-matching samples, it is difficult to separate high-quality identity-relevant feature from identity-irrelevant feature. It will inevitably affect the domain generalization performance. Thus, in this paper, we try to enhance the model’s ability to separate identity-relevant feature from identity-irrelevant feature of hard matching samples, to achieve high-performance domain generalization. To this end, we propose an Adversarial Perturbation and Defense (APD) Re-identification Method. In the APD, to synthesize hard matching samples, we introduce a Metric-Perturbation Generation Network (MPG-Net) grounded in the concept of metric adversariality. In the MPG-Net, we try to perturb the metric relationship of samples in the latent space, while preserving the essential visual details of the original samples. Then, to capture high-quality identity-relevant feature, we propose a Semantic Purification Network (SP-Net). The hard matching samples synthesized by MPG-Net is used to train the SP-Net. In the SP-Net, we further design the Semantic Self-perturbation and Defense (SSD) Scheme, to better disentangle and purify identity-relevant feature from these hard matching samples. Above all, through extensive experimentation, we validate the effectiveness of the APD method in the DG Re-ID task.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.