A new thermoelastic model for agglomerated and randomly-oriented CNT-reinforced bio-inspired materials: Temperature-dependent free vibration analysis of FG-CNTR-TPMS plates
Kim Q. Tran , Thoi V. Duong , Tien-Dat Hoang , Magd Abdel Wahab , Klaus Hackl , H. Nguyen-Xuan
{"title":"A new thermoelastic model for agglomerated and randomly-oriented CNT-reinforced bio-inspired materials: Temperature-dependent free vibration analysis of FG-CNTR-TPMS plates","authors":"Kim Q. Tran , Thoi V. Duong , Tien-Dat Hoang , Magd Abdel Wahab , Klaus Hackl , H. Nguyen-Xuan","doi":"10.1016/j.enganabound.2025.106157","DOIUrl":null,"url":null,"abstract":"<div><div>A new thermoelastic model is introduced to reveal equivalent mechanical and thermal properties of randomly oriented (RO), agglomerated carbon nanotube (CNT) inclusions within a matrix material. Thereafter, a bio-inspired FG-CNTR-TPMS material model is established through three typical triply periodic minimal surfaces (TPMS) microstructures reinforced with CNTs and functionally graded (FG) schemes. The free vibration behavior of macro-scale plates made from FG-CNTR-TPMS materials under thermal effects and material temperature dependencies is then devised. A new higher-order shear deformation (HSDT) five-variable plate theory incorporated with isogeometric analysis (IGA) is proposed to show its reliability and efficiency. Various material conditions have been thoroughly studied, emphasizing the influence of CNT reinforcement states and environment temperatures. While increasing the CNT volume fraction (<span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>r</mi></mrow></msub></math></span>) greatly improves the plate frequencies, the temperature rise (<span><math><mrow><mi>Δ</mi><mi>T</mi></mrow></math></span>) leads to an opposite influence. These properties can amplify or weaken the effects of porosity distributions on the plate’s natural frequencies both beneficial and unfavorable aspects. Notably, the outstanding elastic modulus of IWP-type TPMS enlarges the initial thermal stress and ratio between mechanical and thermal stiffness, causing greater impacts on plate behaviors in the thermal environment. In some exceptional cases, FG-CNTR-TPMS plates with P-type can exceed isotropic plates in stiffness-to-weight ratios, which is an extraordinary characteristic of porous structures. In various scenarios of CNT agglomeration, this natural phenomenon shows noticeable reductions in plate frequencies up to 40% when considering temperature changes. Bridging the gap between TPMS-based lattice structures and CNT-reinforced composites, this study contributes to advancing the knowledge of advanced bio-inspired materials. The findings from this work can revolutionize their potential applications in various engineering areas, particularly biomedical devices, energy storage, flexible electronics, advanced textiles, and soft robotics, where lightweight, high-strength, and temperature-resistant structural components are critical.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"174 ","pages":"Article 106157"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799725000451","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
A new thermoelastic model is introduced to reveal equivalent mechanical and thermal properties of randomly oriented (RO), agglomerated carbon nanotube (CNT) inclusions within a matrix material. Thereafter, a bio-inspired FG-CNTR-TPMS material model is established through three typical triply periodic minimal surfaces (TPMS) microstructures reinforced with CNTs and functionally graded (FG) schemes. The free vibration behavior of macro-scale plates made from FG-CNTR-TPMS materials under thermal effects and material temperature dependencies is then devised. A new higher-order shear deformation (HSDT) five-variable plate theory incorporated with isogeometric analysis (IGA) is proposed to show its reliability and efficiency. Various material conditions have been thoroughly studied, emphasizing the influence of CNT reinforcement states and environment temperatures. While increasing the CNT volume fraction () greatly improves the plate frequencies, the temperature rise () leads to an opposite influence. These properties can amplify or weaken the effects of porosity distributions on the plate’s natural frequencies both beneficial and unfavorable aspects. Notably, the outstanding elastic modulus of IWP-type TPMS enlarges the initial thermal stress and ratio between mechanical and thermal stiffness, causing greater impacts on plate behaviors in the thermal environment. In some exceptional cases, FG-CNTR-TPMS plates with P-type can exceed isotropic plates in stiffness-to-weight ratios, which is an extraordinary characteristic of porous structures. In various scenarios of CNT agglomeration, this natural phenomenon shows noticeable reductions in plate frequencies up to 40% when considering temperature changes. Bridging the gap between TPMS-based lattice structures and CNT-reinforced composites, this study contributes to advancing the knowledge of advanced bio-inspired materials. The findings from this work can revolutionize their potential applications in various engineering areas, particularly biomedical devices, energy storage, flexible electronics, advanced textiles, and soft robotics, where lightweight, high-strength, and temperature-resistant structural components are critical.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.