{"title":"Integration of focused ultrasound and dynamic imaging control system for targeted neuro-modulation","authors":"K.M. Karthick Raghunath , Surbhi Bhatia Khan , T.R. Mahesh , Ahlam Almusharraf , Rubal Jeet , Mohammad Tabrez Quasim , Azeem Irshad , Fatima Asiri","doi":"10.1016/j.jneumeth.2025.110391","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these advancements, precision targeting of deep brain structures remains a challenge faced with great need of another innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Resonance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated Focused Ultrasound and Real-Time Imaging Control System (IFURTICS).</div></div><div><h3>Principle results</h3><div>Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation parameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive networks while minimizing deleterious collateral effects.</div></div><div><h3>Conclusions</h3><div>Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved targeting accuracy by ∼18 %, reduced off-target effects by ∼55 % and enhanced therapeutic outcomes by 50 % over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.</div></div>","PeriodicalId":16415,"journal":{"name":"Journal of Neuroscience Methods","volume":"417 ","pages":"Article 110391"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience Methods","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165027025000329","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Transcranial Direct Current Stimulation (tDCS) and Transcranial Magnetic Stimulation (tMS) have received widespread clinical use as techniques within a Non-Invasive Brain Stimulation (NIBS) domain, whose primary focus is modulation of neural activity to treat neurological and psychiatric disorders. Despite these advancements, precision targeting of deep brain structures remains a challenge faced with great need of another innovation that will improve precision and reduce the risks. A novel methodology integrating transcranial Focused Ultrasound (tFUS) with real-time functional imaging modalities, including functional Magnetic Resonance Imaging (fMRI) and Near-Infra-Red Spectroscopy (NIRS), is proposed in this study as the Integrated Focused Ultrasound and Real-Time Imaging Control System (IFURTICS).
Principle results
Closed loop algorithms employed by IFURTICS allow it to dynamically vary stimulation parameters in response to real-time feedback on neural activity, allowing for accurate targeting of sensitive networks while minimizing deleterious collateral effects.
Conclusions
Clinical trials using standard datasets of fMRI and NIRS have proved that the approach improved targeting accuracy by ∼18 %, reduced off-target effects by ∼55 % and enhanced therapeutic outcomes by 50 % over current methods, suggesting its potential as a transformative approach to precision neuro-modulation.
期刊介绍:
The Journal of Neuroscience Methods publishes papers that describe new methods that are specifically for neuroscience research conducted in invertebrates, vertebrates or in man. Major methodological improvements or important refinements of established neuroscience methods are also considered for publication. The Journal''s Scope includes all aspects of contemporary neuroscience research, including anatomical, behavioural, biochemical, cellular, computational, molecular, invasive and non-invasive imaging, optogenetic, and physiological research investigations.