Application of multiple genomic-editing technologies in Streptomyces fungicidicus for improved enduracidin yield

IF 4.4 2区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Synthetic and Systems Biotechnology Pub Date : 2025-02-17 DOI:10.1016/j.synbio.2025.02.008
Yanan Sun, Guoguo Wu, Yining Wang, Jipeng Jiang, Haikuan Wang, Fufeng Liu, Fuping Lu, Huitu Zhang
{"title":"Application of multiple genomic-editing technologies in Streptomyces fungicidicus for improved enduracidin yield","authors":"Yanan Sun,&nbsp;Guoguo Wu,&nbsp;Yining Wang,&nbsp;Jipeng Jiang,&nbsp;Haikuan Wang,&nbsp;Fufeng Liu,&nbsp;Fuping Lu,&nbsp;Huitu Zhang","doi":"10.1016/j.synbio.2025.02.008","DOIUrl":null,"url":null,"abstract":"<div><div><em>Streptomyces fungicidicus,</em> an industrial strain for enduracidin production, shows significant potential as a cellular chassis for the synthesis of novel small peptides. Targeted deletion of secondary metabolite gene clusters offers a promising strategy to enhance strain performance, but is often hampered by the lack of efficient gene editing tools. In this study, we optimized the traditional homologous recombination method by integrating selection and counter-selection markers to streamline the gene editing process, and successfully deleted gene clusters of up to 54.4 kb. Recognizing the significant potential of CRISPR/Cas-based systems in <em>Streptomyces</em>, we evaluated the base editing efficiency of the CRISPR/cBEST system in <em>S. fungicidicus</em>, which enabled stop codon insertions in the targeted gene with different mutation rates depending on the applied sgRNA. Additionally, we established a CRISPR/Cas9 system in <em>S. fungicidicus</em> while incorporating a counter-selection marker for efficient screening, which greatly shortened the gene editing cycle. The resulting mutants with single and cumulative gene cluster deletions exhibited improved growth characteristics, including a prolonged logarithmic phase and increased biomass. Although cumulative deletions did not result in consistent yield improvements, the mutants with improved growth characteristics show potential for further strain optimization in the future. The optimized gene editing systems developed in this study provide a valuable foundation for engineering other <em>Streptomyces</em> species.</div></div>","PeriodicalId":22148,"journal":{"name":"Synthetic and Systems Biotechnology","volume":"10 2","pages":"Pages 564-573"},"PeriodicalIF":4.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic and Systems Biotechnology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405805X2500016X","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Streptomyces fungicidicus, an industrial strain for enduracidin production, shows significant potential as a cellular chassis for the synthesis of novel small peptides. Targeted deletion of secondary metabolite gene clusters offers a promising strategy to enhance strain performance, but is often hampered by the lack of efficient gene editing tools. In this study, we optimized the traditional homologous recombination method by integrating selection and counter-selection markers to streamline the gene editing process, and successfully deleted gene clusters of up to 54.4 kb. Recognizing the significant potential of CRISPR/Cas-based systems in Streptomyces, we evaluated the base editing efficiency of the CRISPR/cBEST system in S. fungicidicus, which enabled stop codon insertions in the targeted gene with different mutation rates depending on the applied sgRNA. Additionally, we established a CRISPR/Cas9 system in S. fungicidicus while incorporating a counter-selection marker for efficient screening, which greatly shortened the gene editing cycle. The resulting mutants with single and cumulative gene cluster deletions exhibited improved growth characteristics, including a prolonged logarithmic phase and increased biomass. Although cumulative deletions did not result in consistent yield improvements, the mutants with improved growth characteristics show potential for further strain optimization in the future. The optimized gene editing systems developed in this study provide a valuable foundation for engineering other Streptomyces species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic and Systems Biotechnology
Synthetic and Systems Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-
CiteScore
6.90
自引率
12.50%
发文量
90
审稿时长
67 days
期刊介绍: Synthetic and Systems Biotechnology aims to promote the communication of original research in synthetic and systems biology, with strong emphasis on applications towards biotechnology. This journal is a quarterly peer-reviewed journal led by Editor-in-Chief Lixin Zhang. The journal publishes high-quality research; focusing on integrative approaches to enable the understanding and design of biological systems, and research to develop the application of systems and synthetic biology to natural systems. This journal will publish Articles, Short notes, Methods, Mini Reviews, Commentary and Conference reviews.
期刊最新文献
Fatty acid addition strategy redirected the metabolic flux towards an ultra-high monensin productivity of Streptomyces cinnamonensis The advancement of biosensor design and construction utilizing biomolecular motors Development of CRISPR-Cas9-based genome editing tools for non-model microorganism Erwinia persicina Application of multiple genomic-editing technologies in Streptomyces fungicidicus for improved enduracidin yield Overproduction of endusamycin in Streptomyces endus subsp. aureus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1