Effect of strain rate on the mechanical properties of human ribs: Insights from complete rib bending tests

IF 3.3 2区 医学 Q2 ENGINEERING, BIOMEDICAL Journal of the Mechanical Behavior of Biomedical Materials Pub Date : 2025-02-22 DOI:10.1016/j.jmbbm.2025.106954
S. García-Vilana , D. Sánchez-Molina , J. Llumà
{"title":"Effect of strain rate on the mechanical properties of human ribs: Insights from complete rib bending tests","authors":"S. García-Vilana ,&nbsp;D. Sánchez-Molina ,&nbsp;J. Llumà","doi":"10.1016/j.jmbbm.2025.106954","DOIUrl":null,"url":null,"abstract":"<div><div>This study reassesses the mechanical properties of cortical bone by conducting complete rib bending tests to evaluate the effect of strain rate (<span><math><mrow><mn>0</mn><mo>.</mo><mn>0005</mn><mo>&lt;</mo><mover><mrow><mi>ɛ</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>50</mn></mrow></math></span>) on key mechanical parameters. The research involved <span><math><mrow><mi>n</mi><mo>=</mo><mn>12</mn></mrow></math></span> specimens, divided into balanced groups based on age and strain rate. Unlike the traditional approach, which relies on tensile testing of machined cortical bone fragments, this methodology uses intact ribs subjected to bending, eliminating the need for extensive preparation through machining, and determine the mechanical properties in this test in an accurate computational manner.</div><div>Complete rib bending tests pose unique challenges compared to uniaxial tensile tests. The ribs’ curved shape and variable cross-sections necessitate the application of finite strain theory to accurately measure deformation, accounting for large displacements. This study aims to (1) validate the feasibility of deriving precise mechanical properties directly from intact bones, and (2) confirm that these results align with those from tensile testing, which, although simpler to execute, require greater preparation efforts.</div><div>The findings from the rib bending tests confirm the following: (1) the Young’s modulus of cortical bone decreases with age but remains largely unaffected by strain rate within the range examined; and (2) both maximum strain and maximum stress decline with age but increase with higher strain rates. While these trends were previously observed in tensile tests, this study provides new evidence using the more complex methodology of complete rib bending, and describes the progressive loss of stiffness with damage models.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"166 ","pages":"Article 106954"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000700","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study reassesses the mechanical properties of cortical bone by conducting complete rib bending tests to evaluate the effect of strain rate (0.0005<ɛ̇<0.50) on key mechanical parameters. The research involved n=12 specimens, divided into balanced groups based on age and strain rate. Unlike the traditional approach, which relies on tensile testing of machined cortical bone fragments, this methodology uses intact ribs subjected to bending, eliminating the need for extensive preparation through machining, and determine the mechanical properties in this test in an accurate computational manner.
Complete rib bending tests pose unique challenges compared to uniaxial tensile tests. The ribs’ curved shape and variable cross-sections necessitate the application of finite strain theory to accurately measure deformation, accounting for large displacements. This study aims to (1) validate the feasibility of deriving precise mechanical properties directly from intact bones, and (2) confirm that these results align with those from tensile testing, which, although simpler to execute, require greater preparation efforts.
The findings from the rib bending tests confirm the following: (1) the Young’s modulus of cortical bone decreases with age but remains largely unaffected by strain rate within the range examined; and (2) both maximum strain and maximum stress decline with age but increase with higher strain rates. While these trends were previously observed in tensile tests, this study provides new evidence using the more complex methodology of complete rib bending, and describes the progressive loss of stiffness with damage models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the Mechanical Behavior of Biomedical Materials
Journal of the Mechanical Behavior of Biomedical Materials 工程技术-材料科学:生物材料
CiteScore
7.20
自引率
7.70%
发文量
505
审稿时长
46 days
期刊介绍: The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials. The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.
期刊最新文献
Effect of strain rate on the mechanical properties of human ribs: Insights from complete rib bending tests Influence of joint deformation on the auxetic behaviour of 3D printed polypropylene structures Editorial Board An analytical model for customizing reinforcement plasticity to address the strength-ductility trade-off in staggered composites Magnesium-substituted zinc-calcium hydroxyfluorapatite bioceramics for bone tissue engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1