An evaluation scheme incorporating digital characteristics for transient tribological behaviours under complex loading conditions for the hot stamping process
Heli Liu , Xiao Yang , Denis Politis , Huifeng Shi , Liliang Wang
{"title":"An evaluation scheme incorporating digital characteristics for transient tribological behaviours under complex loading conditions for the hot stamping process","authors":"Heli Liu , Xiao Yang , Denis Politis , Huifeng Shi , Liliang Wang","doi":"10.1016/j.compind.2025.104270","DOIUrl":null,"url":null,"abstract":"<div><div>The growing availability of metal forming data has driven a new era of data-centric approaches in digital manufacturing. This wealth of data enables the development of digitally enhanced metal forming processes and associated technologies. In this work, using the hot stamping data obtained from a cloud-based manufacturing database, the digital characteristics (DC), defined as the visualisation of a specific manufacturing process containing essential information spanning over the design, manufacturing, and application phases of the products, were unlocked for the hot stamping process. The complex contact conditions were successfully visualised by the hot stamping DC. Following this discovery, the performance of transient lubricant behaviours was evaluated under complex loading and constant loading conditions regarding coefficient of friction evolution and lubricant limit diagram (LLD), which is a digitally-enhanced approach to enable the quantitative evaluation of different lubricants. Results demonstrate that the efficacy of DC-enhanced methodology facilitates the insightful comprehension of transient tribological behaviours and offers great potential on customised lubricant development towards optimisation of hot stamping and metal forming processes.</div></div>","PeriodicalId":55219,"journal":{"name":"Computers in Industry","volume":"167 ","pages":"Article 104270"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers in Industry","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166361525000351","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
The growing availability of metal forming data has driven a new era of data-centric approaches in digital manufacturing. This wealth of data enables the development of digitally enhanced metal forming processes and associated technologies. In this work, using the hot stamping data obtained from a cloud-based manufacturing database, the digital characteristics (DC), defined as the visualisation of a specific manufacturing process containing essential information spanning over the design, manufacturing, and application phases of the products, were unlocked for the hot stamping process. The complex contact conditions were successfully visualised by the hot stamping DC. Following this discovery, the performance of transient lubricant behaviours was evaluated under complex loading and constant loading conditions regarding coefficient of friction evolution and lubricant limit diagram (LLD), which is a digitally-enhanced approach to enable the quantitative evaluation of different lubricants. Results demonstrate that the efficacy of DC-enhanced methodology facilitates the insightful comprehension of transient tribological behaviours and offers great potential on customised lubricant development towards optimisation of hot stamping and metal forming processes.
期刊介绍:
The objective of Computers in Industry is to present original, high-quality, application-oriented research papers that:
• Illuminate emerging trends and possibilities in the utilization of Information and Communication Technology in industry;
• Establish connections or integrations across various technology domains within the expansive realm of computer applications for industry;
• Foster connections or integrations across diverse application areas of ICT in industry.