Ruonan Bo , Jiahao Wu , Ya Tao , Hailong Hong , Weilong Peng , Weimei Wang , Weihua Wu , Xiaoguang Wang , Mingjiang Liu , Jingui Li
{"title":"Characterization of chitosan-coated PLGA nanoemulsion loaded with cepharanthine and inhibitory effect on Staphylococcus aureus pneumonia of mice","authors":"Ruonan Bo , Jiahao Wu , Ya Tao , Hailong Hong , Weilong Peng , Weimei Wang , Weihua Wu , Xiaoguang Wang , Mingjiang Liu , Jingui Li","doi":"10.1016/j.ijpharm.2025.125396","DOIUrl":null,"url":null,"abstract":"<div><div><em>Staphylococcus aureus (S. aureus),</em> particularly methicillin-resistant strains (MRSA), poses a significant threat to global public health due to its resistance to conventional antibiotics. The urgent need for alternative treatments has highlighted cepharanthine (CEP), a bisbenzylisoquinoline alkaloid, known for its antiviral, antibacterial, and anti-inflammatory properties. However, the clinical application of CEP is constrained by several factors. These include the requirement for a high therapeutic dosage, low aqueous solubility, restricted oral absorption, and a short half − life. In this study, we developed a chitosan-coated Poly Lactic-co-Glycolic Acid (PLGA) nanoemulsion encapsulating CEP (CCPN) using the double-emulsion solvent evaporation method. The formulation was optimized to achieve ideal physicochemical properties, including a particle size of 588.13 ± 31.87 nm and a zeta potential of 48.60 ± 1.00 mV, ensuring stability and uniformity. Biological evaluations demonstrated that CCPN effectively inhibited hemolysis, suppressed biofilm formation, disrupted mature biofilms, and displayed potent antibacterial activity against <em>S. aureus. In vivo</em> studies using a murine pneumonia model revealed that CCPN significantly alleviated lung damage, reduced bacterial load, mitigated inflammatory responses, and improved survival rates of mice infected with <em>S. aureus</em> or MRSA. These findings highlight CCPN as a promising therapeutic strategy for treating bacterial pneumonia. This novel nanoemulsion effectively tackles the key limitations in antimicrobial therapy by boosting the solubility, stability, and antibacterial efficacy of CEP. It holds great promise in the fight against antibiotic − resistant infections and shows substantial potential for promoting the treatment of pulmonary diseases.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"673 ","pages":"Article 125396"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517325002327","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Staphylococcus aureus (S. aureus), particularly methicillin-resistant strains (MRSA), poses a significant threat to global public health due to its resistance to conventional antibiotics. The urgent need for alternative treatments has highlighted cepharanthine (CEP), a bisbenzylisoquinoline alkaloid, known for its antiviral, antibacterial, and anti-inflammatory properties. However, the clinical application of CEP is constrained by several factors. These include the requirement for a high therapeutic dosage, low aqueous solubility, restricted oral absorption, and a short half − life. In this study, we developed a chitosan-coated Poly Lactic-co-Glycolic Acid (PLGA) nanoemulsion encapsulating CEP (CCPN) using the double-emulsion solvent evaporation method. The formulation was optimized to achieve ideal physicochemical properties, including a particle size of 588.13 ± 31.87 nm and a zeta potential of 48.60 ± 1.00 mV, ensuring stability and uniformity. Biological evaluations demonstrated that CCPN effectively inhibited hemolysis, suppressed biofilm formation, disrupted mature biofilms, and displayed potent antibacterial activity against S. aureus. In vivo studies using a murine pneumonia model revealed that CCPN significantly alleviated lung damage, reduced bacterial load, mitigated inflammatory responses, and improved survival rates of mice infected with S. aureus or MRSA. These findings highlight CCPN as a promising therapeutic strategy for treating bacterial pneumonia. This novel nanoemulsion effectively tackles the key limitations in antimicrobial therapy by boosting the solubility, stability, and antibacterial efficacy of CEP. It holds great promise in the fight against antibiotic − resistant infections and shows substantial potential for promoting the treatment of pulmonary diseases.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.