A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process

IF 5.3 2区 农林科学 Q1 ENGINEERING, CHEMICAL Journal of Food Engineering Pub Date : 2025-02-22 DOI:10.1016/j.jfoodeng.2025.112544
Arjun Ghimire, Jiajia Chen
{"title":"A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process","authors":"Arjun Ghimire,&nbsp;Jiajia Chen","doi":"10.1016/j.jfoodeng.2025.112544","DOIUrl":null,"url":null,"abstract":"<div><div>Relative phases between two sources can be precisely and dynamically controlled in dual-port microwave processes. Previously, a combined sweeping and complementary relative phase strategy was used to deliver more uniform heating than microwave heating processes using fixed or orderly sweeping relative phases. However, extensive relative phase sweeping (e.g., ∼44% of the 3-min whole heating time) is needed to collect relative phase-dependent thermal contributions to implement the complementary strategy. This limitation can be addressed by utilizing the constructive and destructive dual-port microwave interactions to develop a more efficient complementary strategy. Built upon the observation that the spatial microwave power dissipation density varies in a sinusoidal wave shape, this study developed a Predictive-Complementary relative phase strategy. Instead of collecting relative phase-dependent thermal contributions using extensive relative phase sweeping, the predictive approach only collected three thermal contributions at relative phases of 0°, 90°, and 180° and then predicted all others for implementing the complementary strategy. The predicted thermal contributions were validated by comparing them with the experimentally collected ones in dual-port microwave heating of gellan gel samples, which showed good correlations with R<sup>2</sup> values between 0.91 and 0.97 and Root Mean Square Error (RMSE) values between 0.17 and 1.02 °C. By comparing with other reported Fixed, Sweeping, and Sweeping-Complementary relative phase strategies, the Predictive-Complementary relative phase strategy devoted ∼83% of the 3-min heating time in the complementary shifting stage and showed the best microwave heating uniformity and power absorption efficiency. The Predictive-Complementary relative phase strategy presented an efficient approach to predicting relative phase-dependent thermal contributions for more uniform microwave heating using complementary relative phases. The algorithm can be integrated as an advanced relative phase heating strategy in smart solid-state microwave systems.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"395 ","pages":"Article 112544"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877425000792","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Relative phases between two sources can be precisely and dynamically controlled in dual-port microwave processes. Previously, a combined sweeping and complementary relative phase strategy was used to deliver more uniform heating than microwave heating processes using fixed or orderly sweeping relative phases. However, extensive relative phase sweeping (e.g., ∼44% of the 3-min whole heating time) is needed to collect relative phase-dependent thermal contributions to implement the complementary strategy. This limitation can be addressed by utilizing the constructive and destructive dual-port microwave interactions to develop a more efficient complementary strategy. Built upon the observation that the spatial microwave power dissipation density varies in a sinusoidal wave shape, this study developed a Predictive-Complementary relative phase strategy. Instead of collecting relative phase-dependent thermal contributions using extensive relative phase sweeping, the predictive approach only collected three thermal contributions at relative phases of 0°, 90°, and 180° and then predicted all others for implementing the complementary strategy. The predicted thermal contributions were validated by comparing them with the experimentally collected ones in dual-port microwave heating of gellan gel samples, which showed good correlations with R2 values between 0.91 and 0.97 and Root Mean Square Error (RMSE) values between 0.17 and 1.02 °C. By comparing with other reported Fixed, Sweeping, and Sweeping-Complementary relative phase strategies, the Predictive-Complementary relative phase strategy devoted ∼83% of the 3-min heating time in the complementary shifting stage and showed the best microwave heating uniformity and power absorption efficiency. The Predictive-Complementary relative phase strategy presented an efficient approach to predicting relative phase-dependent thermal contributions for more uniform microwave heating using complementary relative phases. The algorithm can be integrated as an advanced relative phase heating strategy in smart solid-state microwave systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Engineering
Journal of Food Engineering 工程技术-工程:化工
CiteScore
11.80
自引率
5.50%
发文量
275
审稿时长
24 days
期刊介绍: The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including: Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes. Accounts of food engineering achievements are of particular value.
期刊最新文献
Editorial Board Potential of electrodialysis for the removal of antinutrients and minerals from plant-based ingredients In situ electrochemical impedance spectroscopy of non-BPA food contact coatings on electrolytic tinplate under retort conditions A real-time predictive complementary relative phase shifting strategy for dual-port solid-state microwave heating process Pulsed electric field (PEF) pretreatment impact on the freezing and ultrasound-assisted atmospheric freeze-drying of butternut squash and yellow turnip
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1