GRANA: Graph convolutional network based network representation learning method for attributed network alignment

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2025-02-25 DOI:10.1016/j.ins.2025.122014
Yao Li , He Cai , Huilin Liu
{"title":"GRANA: Graph convolutional network based network representation learning method for attributed network alignment","authors":"Yao Li ,&nbsp;He Cai ,&nbsp;Huilin Liu","doi":"10.1016/j.ins.2025.122014","DOIUrl":null,"url":null,"abstract":"<div><div>Social network alignment, which aims at identifying the correspondences of the same users across networks, is the very first step of information process from multiple social networks. Previous efforts on this task are either more inclined to preserve structural consistency or attribute consistency. Therefore, they only achieve good performance on specific alignment tasks or obtain compromised results on all kinds of alignment tasks. To achieve good generalization, in this paper, we propose a novel multi-task learning method to solve different social network alignment tasks, which is named GRANA (Graph convolutional network-based network Representation learning framework for Attributed Network Alignment). Specifically, a new two-layer cross-network convolutional neural network dubbed Cross-GCN is proposed as shared layers of GRANA. And the intra-network and inter-network attribute and structural information are learned respectively with diverse objective functions in the task specific layer of GRANA. To enhance the alignment performance and accelerate the learning process, a weight learning method with a novel weight initialization process is applied. Experimental results on six kinds of datasets show that GRANA outperforms seven state-of-the-art methods by at least 0.002-0.697 in terms of precision@15 value. The ablation studies further support the effectiveness of proposed Cross-GCN and weight initialization process.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"706 ","pages":"Article 122014"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002002552500146X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Social network alignment, which aims at identifying the correspondences of the same users across networks, is the very first step of information process from multiple social networks. Previous efforts on this task are either more inclined to preserve structural consistency or attribute consistency. Therefore, they only achieve good performance on specific alignment tasks or obtain compromised results on all kinds of alignment tasks. To achieve good generalization, in this paper, we propose a novel multi-task learning method to solve different social network alignment tasks, which is named GRANA (Graph convolutional network-based network Representation learning framework for Attributed Network Alignment). Specifically, a new two-layer cross-network convolutional neural network dubbed Cross-GCN is proposed as shared layers of GRANA. And the intra-network and inter-network attribute and structural information are learned respectively with diverse objective functions in the task specific layer of GRANA. To enhance the alignment performance and accelerate the learning process, a weight learning method with a novel weight initialization process is applied. Experimental results on six kinds of datasets show that GRANA outperforms seven state-of-the-art methods by at least 0.002-0.697 in terms of precision@15 value. The ablation studies further support the effectiveness of proposed Cross-GCN and weight initialization process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Editorial Board GRANA: Graph convolutional network based network representation learning method for attributed network alignment Ensuring privacy and correlation awareness in multi-dimensional service quality prediction and recommendation for IoT EVA: Key values eclosion with space anchor used in hand pose estimation and shape reconstruction Polynomial-time verification of pattern diagnosability for timed discrete event systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1