Geng Liu , Jinpei Ou , Yue Zheng , Yaotong Cai , Xiaoping Liu , Honghui Zhang
{"title":"Large-scale building-level electricity consumption estimation for multiple building types: A case study from Dongguan, China","authors":"Geng Liu , Jinpei Ou , Yue Zheng , Yaotong Cai , Xiaoping Liu , Honghui Zhang","doi":"10.1016/j.scs.2025.106224","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate estimation of building electricity consumption (BEC) is essential for sustainable urban development and effective energy management. Existing methods, which rely on using physical models or small-scale surveys, often lack the accuracy and reliability required to provide meaningful insights at the city-scale building level. To address this gap, we introduce a data-driven framework combining electricity consumption data from meters with building footprint data. This framework, implemented in the megacity of Dongguan, China, utilizes five advanced machine learning algorithms to estimate BEC for residential, commercial, and industrial buildings. Our results show that the random forest (RF) model outperforms other algorithms, with building volume identified as the primary predictor. Spatially, residential BEC decreases from urban centers to suburban and rural areas, while commercial BEC exhibits polarization, with high concentrations in central urban areas and key commercial towns. Although industrial BEC is widespread, it shows localized high-consumption clusters. At the community level, BEC patterns exhibit strong spatial autocorrelation, with distinct hot spots and cold spots observed for residential, commercial, and industrial BEC, despite significant variations in their spatial distributions. Both total BEC and BEC intensity exhibit log-normal distribution characteristics across building types. In terms of median BEC intensity, commercial and industrial buildings consume 3.2 times and 5 times more electricity per unit area, respectively, compared to residential buildings. This study advances the accurate estimation of BEC at the building level for multiple building types within a Chinese megacity, providing valuable insights for sustainable urban planning and energy efficiency policies.</div></div>","PeriodicalId":48659,"journal":{"name":"Sustainable Cities and Society","volume":"121 ","pages":"Article 106224"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Cities and Society","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210670725001015","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate estimation of building electricity consumption (BEC) is essential for sustainable urban development and effective energy management. Existing methods, which rely on using physical models or small-scale surveys, often lack the accuracy and reliability required to provide meaningful insights at the city-scale building level. To address this gap, we introduce a data-driven framework combining electricity consumption data from meters with building footprint data. This framework, implemented in the megacity of Dongguan, China, utilizes five advanced machine learning algorithms to estimate BEC for residential, commercial, and industrial buildings. Our results show that the random forest (RF) model outperforms other algorithms, with building volume identified as the primary predictor. Spatially, residential BEC decreases from urban centers to suburban and rural areas, while commercial BEC exhibits polarization, with high concentrations in central urban areas and key commercial towns. Although industrial BEC is widespread, it shows localized high-consumption clusters. At the community level, BEC patterns exhibit strong spatial autocorrelation, with distinct hot spots and cold spots observed for residential, commercial, and industrial BEC, despite significant variations in their spatial distributions. Both total BEC and BEC intensity exhibit log-normal distribution characteristics across building types. In terms of median BEC intensity, commercial and industrial buildings consume 3.2 times and 5 times more electricity per unit area, respectively, compared to residential buildings. This study advances the accurate estimation of BEC at the building level for multiple building types within a Chinese megacity, providing valuable insights for sustainable urban planning and energy efficiency policies.
期刊介绍:
Sustainable Cities and Society (SCS) is an international journal that focuses on fundamental and applied research to promote environmentally sustainable and socially resilient cities. The journal welcomes cross-cutting, multi-disciplinary research in various areas, including:
1. Smart cities and resilient environments;
2. Alternative/clean energy sources, energy distribution, distributed energy generation, and energy demand reduction/management;
3. Monitoring and improving air quality in built environment and cities (e.g., healthy built environment and air quality management);
4. Energy efficient, low/zero carbon, and green buildings/communities;
5. Climate change mitigation and adaptation in urban environments;
6. Green infrastructure and BMPs;
7. Environmental Footprint accounting and management;
8. Urban agriculture and forestry;
9. ICT, smart grid and intelligent infrastructure;
10. Urban design/planning, regulations, legislation, certification, economics, and policy;
11. Social aspects, impacts and resiliency of cities;
12. Behavior monitoring, analysis and change within urban communities;
13. Health monitoring and improvement;
14. Nexus issues related to sustainable cities and societies;
15. Smart city governance;
16. Decision Support Systems for trade-off and uncertainty analysis for improved management of cities and society;
17. Big data, machine learning, and artificial intelligence applications and case studies;
18. Critical infrastructure protection, including security, privacy, forensics, and reliability issues of cyber-physical systems.
19. Water footprint reduction and urban water distribution, harvesting, treatment, reuse and management;
20. Waste reduction and recycling;
21. Wastewater collection, treatment and recycling;
22. Smart, clean and healthy transportation systems and infrastructure;