Enhanced H2 recovery by coupling the water–gas shift reaction with in situ CO2 capture and mineralization using earth abundant Ca- and Mg-silicates and hydroxides†

IF 3.1 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Reaction Chemistry & Engineering Pub Date : 2024-12-03 DOI:10.1039/D4RE00480A
Xun Gao, Divya Prasad, Mahadeo A. Mahadik and Greeshma Gadikota
{"title":"Enhanced H2 recovery by coupling the water–gas shift reaction with in situ CO2 capture and mineralization using earth abundant Ca- and Mg-silicates and hydroxides†","authors":"Xun Gao, Divya Prasad, Mahadeo A. Mahadik and Greeshma Gadikota","doi":"10.1039/D4RE00480A","DOIUrl":null,"url":null,"abstract":"<p >Decarbonization of clean energy carriers such as H<small><sub>2</sub></small> by coherent integration of multiphase chemical pathways with inherent carbon mineralization is a thermodynamically downhill pathway designed for a sustainable climate, energy, and environmental future. In this effort, a low-temperature water–gas shift reaction (WGSR) with Pt/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalysts is integrated with <em>in situ</em> carbon mineralization in a multiphase reaction environment. The hypothesis that Pt-based catalysts favor selective formation of H<small><sub>2</sub></small> over CH<small><sub>4</sub></small> has been investigated. H<small><sub>2</sub></small> yields increased by 30.8%, 9.5%, 8.3%, and 1.7% in the presence of Ca(OH)<small><sub>2</sub></small>, Mg(OH)<small><sub>2</sub></small>, Mg<small><sub>2</sub></small>SiO<small><sub>4</sub></small>, and CaSiO<small><sub>3</sub></small> relative to the blank experiment without the sorbent at constant experimental conditions of 250 °C and reaction time of 12 hours in the presence of Pt/Al<small><sub>2</sub></small>O<small><sub>3</sub></small> catalyst with initial CO and N<small><sub>2</sub></small> pressures of 8 bar and 12 bar, respectively. These studies unlock the feasibility of advancing single-step multiphase pathways for enhancing H<small><sub>2</sub></small> yields with inherent CO<small><sub>2</sub></small> capture and mineralization for a low carbon and sustainable energy and resource future.</p>","PeriodicalId":101,"journal":{"name":"Reaction Chemistry & Engineering","volume":" 3","pages":" 576-592"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/re/d4re00480a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reaction Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/re/d4re00480a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Decarbonization of clean energy carriers such as H2 by coherent integration of multiphase chemical pathways with inherent carbon mineralization is a thermodynamically downhill pathway designed for a sustainable climate, energy, and environmental future. In this effort, a low-temperature water–gas shift reaction (WGSR) with Pt/Al2O3 catalysts is integrated with in situ carbon mineralization in a multiphase reaction environment. The hypothesis that Pt-based catalysts favor selective formation of H2 over CH4 has been investigated. H2 yields increased by 30.8%, 9.5%, 8.3%, and 1.7% in the presence of Ca(OH)2, Mg(OH)2, Mg2SiO4, and CaSiO3 relative to the blank experiment without the sorbent at constant experimental conditions of 250 °C and reaction time of 12 hours in the presence of Pt/Al2O3 catalyst with initial CO and N2 pressures of 8 bar and 12 bar, respectively. These studies unlock the feasibility of advancing single-step multiphase pathways for enhancing H2 yields with inherent CO2 capture and mineralization for a low carbon and sustainable energy and resource future.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过将水气转换反应与原位CO2捕获和利用富含地球的Ca-和mg -硅酸盐和氢氧化物†矿化相结合,提高了H2的回收率
通过多相化学途径与固有碳矿化的相干整合,H2等清洁能源载体的脱碳是一条为可持续的气候、能源和环境未来而设计的热力学下坡途径。在这项研究中,将Pt/Al2O3催化剂的低温水气转换反应(WGSR)与多相反应环境中的原位碳矿化相结合。pt基催化剂有利于H2而非CH4选择性生成的假设已被研究。实验条件为250℃,初始CO压力为8 bar,初始N2压力为12 bar, Pt/Al2O3催化剂存在下反应时间为12 h,在Ca(OH)2、Mg(OH)2、Mg2SiO4和CaSiO3的条件下,H2产率分别比无吸附剂的空白实验提高了30.8%、9.5%、8.3%和1.7%。这些研究揭示了推进单步多相途径的可行性,通过固有的二氧化碳捕获和矿化来提高H2产量,从而实现低碳和可持续的能源和资源未来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Reaction Chemistry & Engineering
Reaction Chemistry & Engineering Chemistry-Chemistry (miscellaneous)
CiteScore
6.60
自引率
7.70%
发文量
227
期刊介绍: Reaction Chemistry & Engineering is a new journal reporting cutting edge research into all aspects of making molecules for the benefit of fundamental research, applied processes and wider society. From fundamental, molecular-level chemistry to large scale chemical production, Reaction Chemistry & Engineering brings together communities of chemists and chemical engineers working to ensure the crucial role of reaction chemistry in today’s world.
期刊最新文献
Screening of transaminases in a wall-coated microreactor plate Economical synthesis of MOF from CHNS analyzer waste CuO and PET bottles for Congo red sequestration: a pathway towards dual mitigation Fabrication of recyclable magnetic fluorinated polyether nanocomposites with TiO2–carbon heterostructures for enhanced demulsification performance in oily wastewater treatment Environmental assessment of energetic valorization of textile waste via fluidized bed combustion with post-combustion catalytic treatment, thermal plasma application, and carbon capture Himalayan forest waste to carbon nanotubes: a green approach using NADES template for reactive orange 16 dye adsorption
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1