Icariin zeinmersomes display enhanced anti-proliferative and pro-apoptotic activities in colon cancer cells

IF 3.4 Q2 PHARMACOLOGY & PHARMACY Future Journal of Pharmaceutical Sciences Pub Date : 2025-02-25 DOI:10.1186/s43094-025-00780-z
Mohammed Z. Nasrullah, Osama M. Ashour, Nabil A. Alhakamy, Lenah S. Binmahfouz, Rawan H. Hareeri, Faisal Alsenani, Hussam I. Kutbi, Ashraf B. Abdel-Naim
{"title":"Icariin zeinmersomes display enhanced anti-proliferative and pro-apoptotic activities in colon cancer cells","authors":"Mohammed Z. Nasrullah,&nbsp;Osama M. Ashour,&nbsp;Nabil A. Alhakamy,&nbsp;Lenah S. Binmahfouz,&nbsp;Rawan H. Hareeri,&nbsp;Faisal Alsenani,&nbsp;Hussam I. Kutbi,&nbsp;Ashraf B. Abdel-Naim","doi":"10.1186/s43094-025-00780-z","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>The present study aimed at investigating the effectiveness of zeinmersomes (ZMS)-based nano-formulation to enhance icariin (ICA) cytotoxicity in colon cancer cells. The prepared ICA-ZMS was characterized with respect to particle size, entrapment efficiency, and in vitro release.</p><h3>Results</h3><p>ICA-ZMS showed higher cytotoxicity in HCT-116 cells compared to HT-29 and Caco-2 cells with almost no cytotoxicity in normal HCoEpC colon cells. In this regard, ICA-ZMS exhibited potentiated cytotoxicity as compared to ICA-raw. In HCT-116 cells, ICA loaded on ZMS exhibited better cellular penetration compared to ICA-raw. The accumulation of HCT-116 in the S phase was identified using cell cycle analysis. Annexin V staining highlighted a potent pro-apoptotic activity of the prepared ICA-ZMS. This with confirmed by the observed up-regulated Bax and down-regulated Bcl-2 mRNA expression. Further, mRNA expression of p53, cytochrome C, and caspase-3 was significantly increased by exposing cells to ICA-ZMS. This was associated with a detectable decline in mitochondrial membrane potential. These data were confirmed by the ability of ICA-ZMS to significantly enhance the life span of Ehrlich ascites carcinoma-bearing mice.</p><h3>Conclusion</h3><p>This study suggests that the loading of ICA on ZMS nanoparticles enhances its cytotoxic and pro-apoptotic activities. This involves modulation of p53-dependent mitochondrial signaling.</p></div>","PeriodicalId":577,"journal":{"name":"Future Journal of Pharmaceutical Sciences","volume":"11 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://fjps.springeropen.com/counter/pdf/10.1186/s43094-025-00780-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Journal of Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1186/s43094-025-00780-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Background

The present study aimed at investigating the effectiveness of zeinmersomes (ZMS)-based nano-formulation to enhance icariin (ICA) cytotoxicity in colon cancer cells. The prepared ICA-ZMS was characterized with respect to particle size, entrapment efficiency, and in vitro release.

Results

ICA-ZMS showed higher cytotoxicity in HCT-116 cells compared to HT-29 and Caco-2 cells with almost no cytotoxicity in normal HCoEpC colon cells. In this regard, ICA-ZMS exhibited potentiated cytotoxicity as compared to ICA-raw. In HCT-116 cells, ICA loaded on ZMS exhibited better cellular penetration compared to ICA-raw. The accumulation of HCT-116 in the S phase was identified using cell cycle analysis. Annexin V staining highlighted a potent pro-apoptotic activity of the prepared ICA-ZMS. This with confirmed by the observed up-regulated Bax and down-regulated Bcl-2 mRNA expression. Further, mRNA expression of p53, cytochrome C, and caspase-3 was significantly increased by exposing cells to ICA-ZMS. This was associated with a detectable decline in mitochondrial membrane potential. These data were confirmed by the ability of ICA-ZMS to significantly enhance the life span of Ehrlich ascites carcinoma-bearing mice.

Conclusion

This study suggests that the loading of ICA on ZMS nanoparticles enhances its cytotoxic and pro-apoptotic activities. This involves modulation of p53-dependent mitochondrial signaling.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
44
审稿时长
23 weeks
期刊介绍: Future Journal of Pharmaceutical Sciences (FJPS) is the official journal of the Future University in Egypt. It is a peer-reviewed, open access journal which publishes original research articles, review articles and case studies on all aspects of pharmaceutical sciences and technologies, pharmacy practice and related clinical aspects, and pharmacy education. The journal publishes articles covering developments in drug absorption and metabolism, pharmacokinetics and dynamics, drug delivery systems, drug targeting and nano-technology. It also covers development of new systems, methods and techniques in pharmacy education and practice. The scope of the journal also extends to cover advancements in toxicology, cell and molecular biology, biomedical research, clinical and pharmaceutical microbiology, pharmaceutical biotechnology, medicinal chemistry, phytochemistry and nutraceuticals.
期刊最新文献
Application of the quality by design (QbD) approach to the development and validation of analytical methods for the quantification of Lumateperone Tosylate as the bulk drug and capsule dosage form by HPLC Icariin zeinmersomes display enhanced anti-proliferative and pro-apoptotic activities in colon cancer cells Quercetin inhibits steroid-induced hypergluconeogenesis in Saccharomyces cerevisiae Lentinula edodes mycelia extract abrogates chemotherapy-evoked cold and mechanical allodynia in mice Stability indicating RP-UPLC determination of three antiviral agents: emtricitabine, tenofovir, and rilpivirine in combined pharmaceutical dosage form
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1