{"title":"Predicting gas flow rates of wellhead chokes based on a cascade forwards neural network with a historically limited penetrable visibility graph","authors":"Youshi Jiang, Jingkai Hu, Xiyu Chen, Weiren Mo","doi":"10.1007/s10489-025-06365-w","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a novel hybrid model that combines the cascade forward neural network (CFNN) with a historical limited penetrable visibility graph (HLPVG) for accurate prediction of gas flow rates through wellhead chokes in shale gas production. The model addresses the challenges of complex, nonlinear relationships between multiple variables affecting gas flow, including liquid–gas ratio (LGR), upstream pressure, temperature, and choke bean size. Using 11,572 field production samples from shale gas fields in the southern Sichuan Basin, the CFNN-HLPVG model demonstrates superior predictive performance compared to the conventional methods. The HLPVG algorithm transforms time series data into a graph structure, enabling the extraction of rich temporal and topological features, whereas the CFNN captures the complex interactions between variables. The model achieves a mean absolute relative error (MARE) of 0.014, significantly outperforming traditional approaches, including the Gilbert-type correlation, support vector machine, and other neural network architectures. Sobol sensitivity analysis revealed that choke bean size has the greatest impact on gas flow prediction (37.7% first-order sensitivity), followed by upstream pressure (19.3%) and temperature (11.6%), whereas LGR has a minimal influence (0.6%). The model performs particularly well under normal operating conditions but shows decreased accuracy in extreme environments with high temperature and pressure. This research provides a novel approach to gas flow prediction in wellhead chokes, offering valuable insights for optimizing shale gas production operations while highlighting areas for future improvement in handling extreme conditions and multisource data integration.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06365-w","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a novel hybrid model that combines the cascade forward neural network (CFNN) with a historical limited penetrable visibility graph (HLPVG) for accurate prediction of gas flow rates through wellhead chokes in shale gas production. The model addresses the challenges of complex, nonlinear relationships between multiple variables affecting gas flow, including liquid–gas ratio (LGR), upstream pressure, temperature, and choke bean size. Using 11,572 field production samples from shale gas fields in the southern Sichuan Basin, the CFNN-HLPVG model demonstrates superior predictive performance compared to the conventional methods. The HLPVG algorithm transforms time series data into a graph structure, enabling the extraction of rich temporal and topological features, whereas the CFNN captures the complex interactions between variables. The model achieves a mean absolute relative error (MARE) of 0.014, significantly outperforming traditional approaches, including the Gilbert-type correlation, support vector machine, and other neural network architectures. Sobol sensitivity analysis revealed that choke bean size has the greatest impact on gas flow prediction (37.7% first-order sensitivity), followed by upstream pressure (19.3%) and temperature (11.6%), whereas LGR has a minimal influence (0.6%). The model performs particularly well under normal operating conditions but shows decreased accuracy in extreme environments with high temperature and pressure. This research provides a novel approach to gas flow prediction in wellhead chokes, offering valuable insights for optimizing shale gas production operations while highlighting areas for future improvement in handling extreme conditions and multisource data integration.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.