Xiangdong Huang, Junxia Huang, Noor Farizah Ibrahim
{"title":"NVS-Former: A more efficient medical image segmentation model","authors":"Xiangdong Huang, Junxia Huang, Noor Farizah Ibrahim","doi":"10.1007/s10489-025-06387-4","DOIUrl":null,"url":null,"abstract":"<div><p>In the current field of medical image segmentation research, numerous Transformer-based segmentation models have emerged. However, these models often suffer from limitations in multi-scale feature extraction and struggle to capture local detail features and contextual information, thereby constraining their segmentation performance. This paper introduces a novel model for medical image segmentation, called NVS-Former, which comprises both an encoder and a decoder. The key innovation of NVS-Former lies in its redesigned core module during the encoding phase, which not only enhances feature extraction capabilities but also improves the capture of local detail information. Additionally, the decoder structure has been reengineered to further optimize the model’s class prediction abilities. NVS-Former has demonstrated superior performance in tasks involving multi-organ, pulmonary detail, and cell segmentation. In various comparative experiments, it consistently outperformed state-of-the-art methods, highlighting its efficiency and stability in medical image segmentation.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"55 6","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-025-06387-4","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the current field of medical image segmentation research, numerous Transformer-based segmentation models have emerged. However, these models often suffer from limitations in multi-scale feature extraction and struggle to capture local detail features and contextual information, thereby constraining their segmentation performance. This paper introduces a novel model for medical image segmentation, called NVS-Former, which comprises both an encoder and a decoder. The key innovation of NVS-Former lies in its redesigned core module during the encoding phase, which not only enhances feature extraction capabilities but also improves the capture of local detail information. Additionally, the decoder structure has been reengineered to further optimize the model’s class prediction abilities. NVS-Former has demonstrated superior performance in tasks involving multi-organ, pulmonary detail, and cell segmentation. In various comparative experiments, it consistently outperformed state-of-the-art methods, highlighting its efficiency and stability in medical image segmentation.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.