Shane Malone, Barry Cardiff, Deepu John, Arlene John
{"title":"Signal-quality-aware multisensor fusion for atrial fibrillation detection","authors":"Shane Malone, Barry Cardiff, Deepu John, Arlene John","doi":"10.1049/htl2.12121","DOIUrl":null,"url":null,"abstract":"<p>This letter introduces a novel method to enhance atrial fibrillation detection accuracy in healthcare monitoring. Wearable devices often face inconsistent signal quality due to noise. To address this, a multimodal data fusion technique that improves signal reliability during continuous monitoring is proposed. The method improves the precision of detecting R–R intervals by integrating wavelet coefficients from electrocardiogram, photoplethysmogram, and arterial blood pressure signals, weighted according to the quality of each signal. Furthermore, a bi-directional long short-term memory network is developed to accurately detect AF based on the derived heartrate or R–R intervals. Unlike prior studies, this work uniquely evaluates the system’s performance under noisy conditions, demonstrating significant accuracy improvements over single-channel methods. The system's generalizability is confirmed by evaluating the classifier's performance as the number of sensor inputs increases. At a signal-to-noise ratio of −10 dB, the accuracy improves by 4.51% with two sensor inputs and by 10.92% with three inputs, compared to using a single input.</p>","PeriodicalId":37474,"journal":{"name":"Healthcare Technology Letters","volume":"12 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/htl2.12121","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Healthcare Technology Letters","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/htl2.12121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This letter introduces a novel method to enhance atrial fibrillation detection accuracy in healthcare monitoring. Wearable devices often face inconsistent signal quality due to noise. To address this, a multimodal data fusion technique that improves signal reliability during continuous monitoring is proposed. The method improves the precision of detecting R–R intervals by integrating wavelet coefficients from electrocardiogram, photoplethysmogram, and arterial blood pressure signals, weighted according to the quality of each signal. Furthermore, a bi-directional long short-term memory network is developed to accurately detect AF based on the derived heartrate or R–R intervals. Unlike prior studies, this work uniquely evaluates the system’s performance under noisy conditions, demonstrating significant accuracy improvements over single-channel methods. The system's generalizability is confirmed by evaluating the classifier's performance as the number of sensor inputs increases. At a signal-to-noise ratio of −10 dB, the accuracy improves by 4.51% with two sensor inputs and by 10.92% with three inputs, compared to using a single input.
期刊介绍:
Healthcare Technology Letters aims to bring together an audience of biomedical and electrical engineers, physical and computer scientists, and mathematicians to enable the exchange of the latest ideas and advances through rapid online publication of original healthcare technology research. Major themes of the journal include (but are not limited to): Major technological/methodological areas: Biomedical signal processing Biomedical imaging and image processing Bioinstrumentation (sensors, wearable technologies, etc) Biomedical informatics Major application areas: Cardiovascular and respiratory systems engineering Neural engineering, neuromuscular systems Rehabilitation engineering Bio-robotics, surgical planning and biomechanics Therapeutic and diagnostic systems, devices and technologies Clinical engineering Healthcare information systems, telemedicine, mHealth.