Tingpei Huang, Bairen Zhang, Tiantian Zhang, Jianhang Liu, Shibao Li
{"title":"QDND: Quorum-Based Energy Efficiency Aware Directional Neighbor Discovery in Ad Hoc Millimeter Wave Wireless Networks","authors":"Tingpei Huang, Bairen Zhang, Tiantian Zhang, Jianhang Liu, Shibao Li","doi":"10.1002/dac.70005","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In ad hoc millimeter wave (mmWave) wireless networks, nodes typically use directional antennas to cope with their high path loss problem. Directional neighbor discovery is a crucial technology in the first step of establishing the mmWave communication network. However, directional antennas introduce new challenges to the neighbor discovery: beam alignment and heterogeneous operating mode problems. Meanwhile, the continuous neighbor discovery process leads to significant energy consumption. To solve the above challenges, this paper introduces a directional neighbor discovery algorithm QDND with an adjustable duty cycle based on the Grid Quorum system. Firstly, we design a duty cycle adaptive control algorithm to avoid continuous neighbor discovery processes. Secondly, we propose a sector scanning algorithm to guarantee the beam alignment. Finally, we design an operating mode scheduling algorithm to enable two neighbors to work in different operating modes simultaneously. We conduct extensive simulations under different network scenarios to validate the performance of the QDND. The numerical analysis and simulation results show that QDND outperforms existing directional neighbor discovery algorithms in terms of ATTD and MTTD in different numbers of nodes, beamwidths, and duty cycles.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 6","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.70005","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In ad hoc millimeter wave (mmWave) wireless networks, nodes typically use directional antennas to cope with their high path loss problem. Directional neighbor discovery is a crucial technology in the first step of establishing the mmWave communication network. However, directional antennas introduce new challenges to the neighbor discovery: beam alignment and heterogeneous operating mode problems. Meanwhile, the continuous neighbor discovery process leads to significant energy consumption. To solve the above challenges, this paper introduces a directional neighbor discovery algorithm QDND with an adjustable duty cycle based on the Grid Quorum system. Firstly, we design a duty cycle adaptive control algorithm to avoid continuous neighbor discovery processes. Secondly, we propose a sector scanning algorithm to guarantee the beam alignment. Finally, we design an operating mode scheduling algorithm to enable two neighbors to work in different operating modes simultaneously. We conduct extensive simulations under different network scenarios to validate the performance of the QDND. The numerical analysis and simulation results show that QDND outperforms existing directional neighbor discovery algorithms in terms of ATTD and MTTD in different numbers of nodes, beamwidths, and duty cycles.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.