Fazal Haq, Hassan Ali Ghazwani, Jihad Younis, Mofareh Hassan Ghazwani, Ali Alnujaie
{"title":"Numerical Investigation of Mass and Heat Transfer in Ternary Hybrid Nanofluid Flow With Activation Energy","authors":"Fazal Haq, Hassan Ali Ghazwani, Jihad Younis, Mofareh Hassan Ghazwani, Ali Alnujaie","doi":"10.1155/er/8061691","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Ternary hybrid nanofluids (THNFs) are modern fluids introduced to enhance the performance of conventional hybrid nanofluids (HNFs). Their unique properties make them suitable for diverse applications, ranging from heat exchangers to advanced industrial and medical treatments. Due to the practical applications and innovative features of THNFs, this paper aims to analyze the performance of these fluids to improve the efficiency of modern devices. The THNF is formulated by adding nanoparticles of three different kinds of aluminum oxide (Al<sub>2</sub>O<sub>3</sub>), silicon dioxide (SiO<sub>2</sub>), and copper (Cu) into water (H<sub>2</sub>O) based ethylene glycol (C<sub>2</sub>H<sub>6</sub>O<sub>2</sub>). The momentum equation is formulated considering the influences of Darcy Forchheimer, permeability, and magnetic field. Thermal radiation, intermolecular friction force, and Joule heating effects are accounted in the thermal field equation. Mass concentration relation is acquired considering binary chemical reaction and activation energy (AE). Additionally, the influence of stratifications (thermal and solutal) at the boundary of the cylinder is considered. The physical phenomenon representing partial differential equations is reduced into ordinary ones utilizing the transformations and then solved via Runge–Kutta Fehlberg (RKF-45) numerical scheme in Mathematics. Influence of involved sundry variables on HNF and THNF velocity, thermal field, mass concentration, surface drag force (skin friction coefficient), mass, and heat transfer rates were examined. The results showed that the velocity fields of THNF and HNF decay through variables Darcy Forchheimer, porosity, and Hartman number. Thermal field of THNF and HNF improves via radiation parameter, Eckert number, and Hartman number. Local heat transfer rate upsurges versus curvature variable and Prandtl number.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8061691","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8061691","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Ternary hybrid nanofluids (THNFs) are modern fluids introduced to enhance the performance of conventional hybrid nanofluids (HNFs). Their unique properties make them suitable for diverse applications, ranging from heat exchangers to advanced industrial and medical treatments. Due to the practical applications and innovative features of THNFs, this paper aims to analyze the performance of these fluids to improve the efficiency of modern devices. The THNF is formulated by adding nanoparticles of three different kinds of aluminum oxide (Al2O3), silicon dioxide (SiO2), and copper (Cu) into water (H2O) based ethylene glycol (C2H6O2). The momentum equation is formulated considering the influences of Darcy Forchheimer, permeability, and magnetic field. Thermal radiation, intermolecular friction force, and Joule heating effects are accounted in the thermal field equation. Mass concentration relation is acquired considering binary chemical reaction and activation energy (AE). Additionally, the influence of stratifications (thermal and solutal) at the boundary of the cylinder is considered. The physical phenomenon representing partial differential equations is reduced into ordinary ones utilizing the transformations and then solved via Runge–Kutta Fehlberg (RKF-45) numerical scheme in Mathematics. Influence of involved sundry variables on HNF and THNF velocity, thermal field, mass concentration, surface drag force (skin friction coefficient), mass, and heat transfer rates were examined. The results showed that the velocity fields of THNF and HNF decay through variables Darcy Forchheimer, porosity, and Hartman number. Thermal field of THNF and HNF improves via radiation parameter, Eckert number, and Hartman number. Local heat transfer rate upsurges versus curvature variable and Prandtl number.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system