Study of the Relationship Between Electrical Conductivity, Batter–Crumb Transition, and Leavening Powders During the Ohmic Baking of Pound Cake

IF 2.7 3区 农林科学 Q3 ENGINEERING, CHEMICAL Journal of Food Process Engineering Pub Date : 2025-02-25 DOI:10.1111/jfpe.70034
Doina Crucean, Eugenia Ayebea Asamoah, Anthony Oge, Delphine Queveau, Olivier Rouaud, Alain Le-Bail, Patricia Le-Bail
{"title":"Study of the Relationship Between Electrical Conductivity, Batter–Crumb Transition, and Leavening Powders During the Ohmic Baking of Pound Cake","authors":"Doina Crucean,&nbsp;Eugenia Ayebea Asamoah,&nbsp;Anthony Oge,&nbsp;Delphine Queveau,&nbsp;Olivier Rouaud,&nbsp;Alain Le-Bail,&nbsp;Patricia Le-Bail","doi":"10.1111/jfpe.70034","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Ohmic heating (OH) is a promising technology in the food industry, with electrical conductivity (EC) playing a crucial role in its effectiveness. This study aimed to correlate the evolution of EC during pound cake baking using OH with the degree of starch gelatinization (DSG) and assess the impact of two sodium acid pyrophosphate leavening acids—SAPP10 and SAPP40—on EC. Baking was conducted in a prototype OH cell, and EC was measured in two ways: during baking as a function of increasing temperature, and at specific baking times and temperatures at the cake center. The latter was measured using impedancemetry at room temperature and correlated with the DSG determined by differential scanning calorimetry. Key results showed a clear negative correlation between EC and the DSG in the center of the OH-baked cake. Specifically, as the DSG increased from 4% at 60°C to about 48% at 76°C, EC decreased from 390 μS/cm to approximately 89 μS/cm, respectively. Importantly, the addition of different baking powders did not significantly affect EC evolution. These findings suggest that the relationship between EC and starch gelatinization in cakes is influenced by moisture content and ion mobility during baking. This study highlights the potential of EC monitoring as a tool to track internal changes in cakes during the OH process, offering valuable insights into how baking conditions can influence final product characteristics like texture and quality.</p>\n </div>","PeriodicalId":15932,"journal":{"name":"Journal of Food Process Engineering","volume":"48 2","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Process Engineering","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfpe.70034","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Ohmic heating (OH) is a promising technology in the food industry, with electrical conductivity (EC) playing a crucial role in its effectiveness. This study aimed to correlate the evolution of EC during pound cake baking using OH with the degree of starch gelatinization (DSG) and assess the impact of two sodium acid pyrophosphate leavening acids—SAPP10 and SAPP40—on EC. Baking was conducted in a prototype OH cell, and EC was measured in two ways: during baking as a function of increasing temperature, and at specific baking times and temperatures at the cake center. The latter was measured using impedancemetry at room temperature and correlated with the DSG determined by differential scanning calorimetry. Key results showed a clear negative correlation between EC and the DSG in the center of the OH-baked cake. Specifically, as the DSG increased from 4% at 60°C to about 48% at 76°C, EC decreased from 390 μS/cm to approximately 89 μS/cm, respectively. Importantly, the addition of different baking powders did not significantly affect EC evolution. These findings suggest that the relationship between EC and starch gelatinization in cakes is influenced by moisture content and ion mobility during baking. This study highlights the potential of EC monitoring as a tool to track internal changes in cakes during the OH process, offering valuable insights into how baking conditions can influence final product characteristics like texture and quality.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Food Process Engineering
Journal of Food Process Engineering 工程技术-工程:化工
CiteScore
5.70
自引率
10.00%
发文量
259
审稿时长
2 months
期刊介绍: This international research journal focuses on the engineering aspects of post-production handling, storage, processing, packaging, and distribution of food. Read by researchers, food and chemical engineers, and industry experts, this is the only international journal specifically devoted to the engineering aspects of food processing. Co-Editors M. Elena Castell-Perez and Rosana Moreira, both of Texas A&M University, welcome papers covering the best original research on applications of engineering principles and concepts to food and food processes.
期刊最新文献
Issue Information Study of the Relationship Between Electrical Conductivity, Batter–Crumb Transition, and Leavening Powders During the Ohmic Baking of Pound Cake Advanced Modeling Approaches for Quality Assessment of Papaya Leather Dried in IoT-Enabled IR-Assisted Refractance Window Dryer Influence of Hydrocolloids on the Drying and Functional Properties of Facheiro (Pilosocereus pachycladus) Fruit Pulp Powders Performance Analysis of Food Refrigeration System Without Defrost Operation: Eco-Design Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1