Sex-Specific Ultraviolet Radiation Tolerance Across Drosophila

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2025-02-25 DOI:10.1002/ece3.70985
James E. Titus-McQuillan, Brandon A. Turner, Rebekah L. Rogers
{"title":"Sex-Specific Ultraviolet Radiation Tolerance Across Drosophila","authors":"James E. Titus-McQuillan,&nbsp;Brandon A. Turner,&nbsp;Rebekah L. Rogers","doi":"10.1002/ece3.70985","DOIUrl":null,"url":null,"abstract":"<p>The genetic basis of phenotypic differences between species is a longstanding question in evolutionary biology. How new genes form and selection acts to produce differences across species are fundamental to understanding how species evolve. Adaptation and genetic innovation arise in the genome from a variety of sources. Functional genomics requires both genetic discoveries and empirical testing to observe adaptation between lineages. We explore two species of <i>Drosophila</i> from the island of São Tomé and mainland Africa, <i>D. santomea</i> and <i>D. yakuba</i>. These two species have varying distributions based on elevation on São Tomé, with populations of <i>D. yakuba</i> also inhabiting mainland Africa. Genomic/genetic evidence shows genes between species may have a role in adaptation to higher UV tolerance. We conducted empirical UV assays between <i>D. santomea</i> and both <i>D. yakuba</i> populations. Flies were shocked by UVB radiation for 30 min on a transilluminator apparatus. Custom 5-wall acrylic enclosures were constructed for viewing and containment of flies. Island groups show significant differences between fall-time under UV stress and recovery time post-UV stress test between populations and by sex. This study shows evidence that mainland flies are less resistant to UV radiation than their island counterparts. Differential expression analysis also shows potential for new mutations and local adaptation for DNA repair of <i>D. santomea</i>. Understanding the mechanisms and processes that promote adaptation and testing traits within the context of the genome is crucially important to understand evolutionary machinery.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70985","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70985","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The genetic basis of phenotypic differences between species is a longstanding question in evolutionary biology. How new genes form and selection acts to produce differences across species are fundamental to understanding how species evolve. Adaptation and genetic innovation arise in the genome from a variety of sources. Functional genomics requires both genetic discoveries and empirical testing to observe adaptation between lineages. We explore two species of Drosophila from the island of São Tomé and mainland Africa, D. santomea and D. yakuba. These two species have varying distributions based on elevation on São Tomé, with populations of D. yakuba also inhabiting mainland Africa. Genomic/genetic evidence shows genes between species may have a role in adaptation to higher UV tolerance. We conducted empirical UV assays between D. santomea and both D. yakuba populations. Flies were shocked by UVB radiation for 30 min on a transilluminator apparatus. Custom 5-wall acrylic enclosures were constructed for viewing and containment of flies. Island groups show significant differences between fall-time under UV stress and recovery time post-UV stress test between populations and by sex. This study shows evidence that mainland flies are less resistant to UV radiation than their island counterparts. Differential expression analysis also shows potential for new mutations and local adaptation for DNA repair of D. santomea. Understanding the mechanisms and processes that promote adaptation and testing traits within the context of the genome is crucially important to understand evolutionary machinery.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
果蝇对紫外线辐射的耐受性有性别差异
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
Spatiotemporal Response and Phytopotential of Typha domingensis for Management of Aquatic Metal Pollution on the Central African Copperbelt Impact of Climate Change on the Narrow Endemic Herb Psilopeganum sinense (Rutaceae) in China Nests, Threats, and Leks: Nonrandom Distributions of Nests in Ruffs (Calidris pugnax) Identification of Goldenseal (Hydrastis canadensis L.) Habitat and Indicators in Pennsylvania, USA: The Influence of Climate and Site on In Situ Conservation of an Edge of Range Plant Species The Genome of the Lima Bean Variety Baiyu Bean Highlights Its Evolutionary Characteristics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1