Compound Minor Floods and the Role of Discharge in the Delaware River Estuary

IF 3.3 2区 地球科学 Q1 OCEANOGRAPHY Journal of Geophysical Research-Oceans Pub Date : 2025-02-26 DOI:10.1029/2024JC021716
Kelly McKeon, Christopher G. Piecuch
{"title":"Compound Minor Floods and the Role of Discharge in the Delaware River Estuary","authors":"Kelly McKeon,&nbsp;Christopher G. Piecuch","doi":"10.1029/2024JC021716","DOIUrl":null,"url":null,"abstract":"<p>Compound floods are often thought of as large, infrequent floods during which extremes of coastal sea level and/or river flow combine with each other or additional factors (e.g., tides and rainfall) to induce major flooding. However, little is known about the potentially compound nature of more frequent, lower-level floods. Here, we introduce the term “compound minor floods” to define minor floods composed of two or more water-level sources. We use the Delaware River Estuary as a case study to investigate the prevalence and composition of these minor compound floods along the extent of a tidal river. We apply multiple linear regression to a 22-year time series of coastal water levels and river discharge to establish the contributions of tides, nontidal open-ocean effects, and river discharge to minor flood events at eight locations along the tidal Delaware River. We find that most minor flood events are compound in nature, requiring at least two components (e.g., tides and river discharge) to initiate flooding. We identify spatial structure in the relative importance of oceanographic and riverine contributions to minor flooding along the tidal reach of the estuary. These results suggest that incorporating fluvial components into minor flooding assessments is important to fully characterize flood risk along tidal rivers and estuaries.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JC021716","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021716","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Compound floods are often thought of as large, infrequent floods during which extremes of coastal sea level and/or river flow combine with each other or additional factors (e.g., tides and rainfall) to induce major flooding. However, little is known about the potentially compound nature of more frequent, lower-level floods. Here, we introduce the term “compound minor floods” to define minor floods composed of two or more water-level sources. We use the Delaware River Estuary as a case study to investigate the prevalence and composition of these minor compound floods along the extent of a tidal river. We apply multiple linear regression to a 22-year time series of coastal water levels and river discharge to establish the contributions of tides, nontidal open-ocean effects, and river discharge to minor flood events at eight locations along the tidal Delaware River. We find that most minor flood events are compound in nature, requiring at least two components (e.g., tides and river discharge) to initiate flooding. We identify spatial structure in the relative importance of oceanographic and riverine contributions to minor flooding along the tidal reach of the estuary. These results suggest that incorporating fluvial components into minor flooding assessments is important to fully characterize flood risk along tidal rivers and estuaries.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特拉华河河口的复合小洪水和排放的作用
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
期刊最新文献
Mesopelagic Particle Layers in the Dynamic Hypoxic Northern Benguela Are Shaped by Zooplankton Activity Modeling the Dissolution and Transport of Bubbles Emitted From Hydrocarbon Seeps Within the Hydrate Stability Zone of the Oceans Seasonal Variation of Air-Sea CO2 Flux and Contribution of Biological Processes to Carbon Source/Sink in a Large River-Dominated Shelf Sea Reef Community Productivity and Calcification – Spatial and Temporal Variability in Recovering Coral Reefs Insights Into Protistan Plankton Blooms in the Highly Dynamic Patagonian Shelf and Adjacent Ocean Basin in the Southwestern Atlantic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1