William H. Robert, Yoshiki Yamazaki, Kwok Fai Cheung, Thorne Lay
{"title":"Tsunami Variability for the 2021 Megathrust and 2023 Outer Rise MW 7.7 Earthquakes Southeast of the Loyalty Islands","authors":"William H. Robert, Yoshiki Yamazaki, Kwok Fai Cheung, Thorne Lay","doi":"10.1029/2024JC021880","DOIUrl":null,"url":null,"abstract":"<p>The 2021 shallow plate-boundary thrust-faulting and 2023 outer rise normal-faulting <i>M</i><sub><i>W</i></sub> 7.7 earthquakes southeast of the Loyalty Islands produced significant, well-recorded tsunamis around the North and South Fiji Basins. The two earthquakes occurred in close proximity on opposing sides of the Southern Vanuatu Trench with similar seismic moments and east-west rupture lengths but different faulting mechanisms. This provides a basis to examine tsunami sensitivity to source geometry and location for paths in the complex southwest Pacific region. Finite-fault models of the source processes for both events were inverted from teleseismic body wave data with constraints from forward, nonhydrostatic modeling of regional tide gauge and seafloor pressure sensor recordings. The wave motions are reversed in sign, with a leading crest generated by 1.31 m uplift on the upper plate slope for the 2021 tsunami and a leading trough from 2.37 m subsidence on the subducting plate near the trench for the 2023 tsunami. The more recent outer rise normal faulting produces narrower seafloor deformation beneath deeper water resulting in shorter period tsunami waves that shoal and refract more effectively along seamounts and island chains to produce a more elaborate radiation pattern. The source location relative to seamounts and small islands in the near field influences the energy lobes and directionality of the far-field tsunami to the north. In contrast, both events have very similar radiation patterns to the south due to absence of major bathymetric features immediately southward of the sources.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 3","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JC021880","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0
Abstract
The 2021 shallow plate-boundary thrust-faulting and 2023 outer rise normal-faulting MW 7.7 earthquakes southeast of the Loyalty Islands produced significant, well-recorded tsunamis around the North and South Fiji Basins. The two earthquakes occurred in close proximity on opposing sides of the Southern Vanuatu Trench with similar seismic moments and east-west rupture lengths but different faulting mechanisms. This provides a basis to examine tsunami sensitivity to source geometry and location for paths in the complex southwest Pacific region. Finite-fault models of the source processes for both events were inverted from teleseismic body wave data with constraints from forward, nonhydrostatic modeling of regional tide gauge and seafloor pressure sensor recordings. The wave motions are reversed in sign, with a leading crest generated by 1.31 m uplift on the upper plate slope for the 2021 tsunami and a leading trough from 2.37 m subsidence on the subducting plate near the trench for the 2023 tsunami. The more recent outer rise normal faulting produces narrower seafloor deformation beneath deeper water resulting in shorter period tsunami waves that shoal and refract more effectively along seamounts and island chains to produce a more elaborate radiation pattern. The source location relative to seamounts and small islands in the near field influences the energy lobes and directionality of the far-field tsunami to the north. In contrast, both events have very similar radiation patterns to the south due to absence of major bathymetric features immediately southward of the sources.