Ze Bian, Yufei Zhang, Huan Lin, Yuan Zhu, Jie Zhang
{"title":"Integrating Sustainability into Biologically Inspired Design: A Systematic Evaluation Model.","authors":"Ze Bian, Yufei Zhang, Huan Lin, Yuan Zhu, Jie Zhang","doi":"10.3390/biomimetics10020111","DOIUrl":null,"url":null,"abstract":"<p><p>Biologically inspired product design (BIPD) inherently encompasses the concept of sustainability. It acquires inspiration from natural organisms, and the references in aspects such as form, structure, and function typically contribute to efficient resource utilization and environmentally friendly coexistence. However, past studies have mainly evaluated from the perspective of designers and researchers, which is relatively subjective. It is difficult to meet the real needs of industry and market. At the same time, the method of establishing indicators is not scientific enough, and the importance of indicators is not ranked. This research integrates the concept of sustainable design into the BIPD evaluation system, comprehensively considering the evaluation indices of different stakeholders such as sustainable designers, industrial designers, and users and decision-makers of design companies. By employing the analytic hierarchy process, a complete and systematic evaluation index model is constructed. This model can comprehensively and accurately screen and evaluate design proposals during the conceptual design stage of BIPD. Through this approach, it effectively averts resource waste caused by incorrect decisions in the production process, optimizes resource allocation, meets user requirements and vigorously promotes the sustainable development of BIPD throughout its entire life cycle.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852641/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020111","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biologically inspired product design (BIPD) inherently encompasses the concept of sustainability. It acquires inspiration from natural organisms, and the references in aspects such as form, structure, and function typically contribute to efficient resource utilization and environmentally friendly coexistence. However, past studies have mainly evaluated from the perspective of designers and researchers, which is relatively subjective. It is difficult to meet the real needs of industry and market. At the same time, the method of establishing indicators is not scientific enough, and the importance of indicators is not ranked. This research integrates the concept of sustainable design into the BIPD evaluation system, comprehensively considering the evaluation indices of different stakeholders such as sustainable designers, industrial designers, and users and decision-makers of design companies. By employing the analytic hierarchy process, a complete and systematic evaluation index model is constructed. This model can comprehensively and accurately screen and evaluate design proposals during the conceptual design stage of BIPD. Through this approach, it effectively averts resource waste caused by incorrect decisions in the production process, optimizes resource allocation, meets user requirements and vigorously promotes the sustainable development of BIPD throughout its entire life cycle.