{"title":"Antibacterial and Osteogenesis Promotion of Bionic Extracellular Matrix Implant Coating Based on Gallic Acid Self-Assembly.","authors":"Zhongchao Wang, Jinghan Wang, Liang Shi, Haokun Yuan, Jiaqi Wu, Weiwei Xiao, Bingyang Lu, Xiao Luo, Xiao Han, Liyuan Fan","doi":"10.1021/acsbiomaterials.4c02267","DOIUrl":null,"url":null,"abstract":"<p><p>Oral health problems, particularly tooth defects, can significantly affect people's quality of life and overall well-being. The development of titanium (Ti) dental implants has largely replaced natural tooth roots to prevent periodontal and gastrointestinal diseases. However, challenges such as postoperative bacterial infections and poor osseointegration continue to hinder progress in dental implant technology. To tackle these issues, we used hydroxypropyl trimethylammonium chloride chitosan (HACC) and gallic acid-modified gelatin (GAG) to create extracellular matrix (ECM) coatings on titanium using layer-by-layer self-assembly. GAG showed better water solubility at room temperature, being over 99.0 times more soluble than regular gelatin. <i>In vivo</i> and <i>in vitro</i> analyses of the ECM coatings revealed their antibacterial properties and their ability to promote osteogenic differentiation, resulting in over 31.5 times more calcareous deposits than Ti. This strategy shows potential for improving oral health and reducing the complications associated with dental implants in clinical settings.</p>","PeriodicalId":8,"journal":{"name":"ACS Biomaterials Science & Engineering","volume":" ","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Biomaterials Science & Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1021/acsbiomaterials.4c02267","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Oral health problems, particularly tooth defects, can significantly affect people's quality of life and overall well-being. The development of titanium (Ti) dental implants has largely replaced natural tooth roots to prevent periodontal and gastrointestinal diseases. However, challenges such as postoperative bacterial infections and poor osseointegration continue to hinder progress in dental implant technology. To tackle these issues, we used hydroxypropyl trimethylammonium chloride chitosan (HACC) and gallic acid-modified gelatin (GAG) to create extracellular matrix (ECM) coatings on titanium using layer-by-layer self-assembly. GAG showed better water solubility at room temperature, being over 99.0 times more soluble than regular gelatin. In vivo and in vitro analyses of the ECM coatings revealed their antibacterial properties and their ability to promote osteogenic differentiation, resulting in over 31.5 times more calcareous deposits than Ti. This strategy shows potential for improving oral health and reducing the complications associated with dental implants in clinical settings.
期刊介绍:
ACS Biomaterials Science & Engineering is the leading journal in the field of biomaterials, serving as an international forum for publishing cutting-edge research and innovative ideas on a broad range of topics:
Applications and Health – implantable tissues and devices, prosthesis, health risks, toxicology
Bio-interactions and Bio-compatibility – material-biology interactions, chemical/morphological/structural communication, mechanobiology, signaling and biological responses, immuno-engineering, calcification, coatings, corrosion and degradation of biomaterials and devices, biophysical regulation of cell functions
Characterization, Synthesis, and Modification – new biomaterials, bioinspired and biomimetic approaches to biomaterials, exploiting structural hierarchy and architectural control, combinatorial strategies for biomaterials discovery, genetic biomaterials design, synthetic biology, new composite systems, bionics, polymer synthesis
Controlled Release and Delivery Systems – biomaterial-based drug and gene delivery, bio-responsive delivery of regulatory molecules, pharmaceutical engineering
Healthcare Advances – clinical translation, regulatory issues, patient safety, emerging trends
Imaging and Diagnostics – imaging agents and probes, theranostics, biosensors, monitoring
Manufacturing and Technology – 3D printing, inks, organ-on-a-chip, bioreactor/perfusion systems, microdevices, BioMEMS, optics and electronics interfaces with biomaterials, systems integration
Modeling and Informatics Tools – scaling methods to guide biomaterial design, predictive algorithms for structure-function, biomechanics, integrating bioinformatics with biomaterials discovery, metabolomics in the context of biomaterials
Tissue Engineering and Regenerative Medicine – basic and applied studies, cell therapies, scaffolds, vascularization, bioartificial organs, transplantation and functionality, cellular agriculture