Fabian T Faul, Laurent Cronier, Ali Alhulaymi, A Douglas Stone, Philipp Del Hougne
{"title":"Agile Free-Form Signal Filtering and Routing with a Chaotic-Cavity-Backed Non-Local Programmable Metasurface.","authors":"Fabian T Faul, Laurent Cronier, Ali Alhulaymi, A Douglas Stone, Philipp Del Hougne","doi":"10.1002/advs.202500796","DOIUrl":null,"url":null,"abstract":"<p><p>Filter synthesis is an inverse problem that is traditionally approached rationally by engineering the coupling between selected pairs of lumped resonators. The implicit restriction to spatially disjoint resonators strongly limits the design space, making it challenging to build extremely tunable filters. Here, agile free-form signal filtering and routing are demonstrated with an alternative purely-optimization-based approach leveraging a multi-parameter programmable system with many spatially overlapping modes. The approach is largely insensitive to system details other than the programmable system configuration. In the fabricated prototype, all ports and tunable meta-elements are strongly coupled via a quasi-2D chaotic cavity such that the meta-elements' configuration efficiently controls the transfer function between the ports. The all-metallic device enables low-loss and ultra-wideband (UWB) tunability (7.5-13.5 GHz) and guarantees signal-strength-independent linearity. First, theoretical predictions about reflectionless and transmissionless scattering modes (including transmissionless exceptional points) are experimentally confirmed. Second, these transfer function zeros are imposed at desired frequencies within an UWB range. Third, low-loss reflectionless programmable signal routing is achieved. Fourth, the trade-off between routing fidelity and bandwidth is investigated, achieving 20 dB discrimination over 10 MHz bandwidth. Fifth, UWB-tunable multi-band filtering is demonstrated that rejects (< -24 dB) or passes (≥ -1 dB) signals in specified bands whose centers, widths and number are reprogrammable.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2500796"},"PeriodicalIF":14.3000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202500796","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Filter synthesis is an inverse problem that is traditionally approached rationally by engineering the coupling between selected pairs of lumped resonators. The implicit restriction to spatially disjoint resonators strongly limits the design space, making it challenging to build extremely tunable filters. Here, agile free-form signal filtering and routing are demonstrated with an alternative purely-optimization-based approach leveraging a multi-parameter programmable system with many spatially overlapping modes. The approach is largely insensitive to system details other than the programmable system configuration. In the fabricated prototype, all ports and tunable meta-elements are strongly coupled via a quasi-2D chaotic cavity such that the meta-elements' configuration efficiently controls the transfer function between the ports. The all-metallic device enables low-loss and ultra-wideband (UWB) tunability (7.5-13.5 GHz) and guarantees signal-strength-independent linearity. First, theoretical predictions about reflectionless and transmissionless scattering modes (including transmissionless exceptional points) are experimentally confirmed. Second, these transfer function zeros are imposed at desired frequencies within an UWB range. Third, low-loss reflectionless programmable signal routing is achieved. Fourth, the trade-off between routing fidelity and bandwidth is investigated, achieving 20 dB discrimination over 10 MHz bandwidth. Fifth, UWB-tunable multi-band filtering is demonstrated that rejects (< -24 dB) or passes (≥ -1 dB) signals in specified bands whose centers, widths and number are reprogrammable.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.