Maia Marchand, Sébastien Depienne, Mohammed Bouzelha, Karine Pavageau, Roxane Peumery, Denis Loquet, Dimitri Alvarez-Dorta, Mickaël Guilbaud, Mikaël Croyal, Aurélien Dupont, Oumeya Adjali, Sébastien G Gouin, David Deniaud, Mathieu Mével
{"title":"Bioorthogonal Chemical Engineering of rAAV Capsid: Advancing Gene Therapy Targeting Using Proteins.","authors":"Maia Marchand, Sébastien Depienne, Mohammed Bouzelha, Karine Pavageau, Roxane Peumery, Denis Loquet, Dimitri Alvarez-Dorta, Mickaël Guilbaud, Mikaël Croyal, Aurélien Dupont, Oumeya Adjali, Sébastien G Gouin, David Deniaud, Mathieu Mével","doi":"10.1021/acs.bioconjchem.4c00580","DOIUrl":null,"url":null,"abstract":"<p><p>We report the chemical conjugation of a recombinant Adeno Associated Virus (rAAV) capsid with various functionalities, including proteins, using a bioorthogonal strategy. rAAVs were azido-coated or dibenzylcyclooctyne (DBCO)-coated by chemically modifying lysine or tyrosine residues. Lysine residues were modified using a phenyl isothiocyanate anchor, and tyrosine residues using either an aryl diazonium salt or a <i>N</i>-methyl luminol derivative. We demonstrate anchor-dependent labeling levels, as observed with biochemical assays and mass spectrometry. Strain-promoted azide-alkyne cycloaddition (SPAAC) was then implemented and evaluated on the rAAV to append functionalities such as fluorescein, biotin, and carbohydrates to the azido-coated capsids. We confirmed the efficiency of the bioorthogonal reaction and observed a stronger reactivity with dibenzylcyclooctyne (DBCO) compared to bicyclononyne (BCN). The optimized SPAAC reaction was finally used to label the viral vectors with two relevant nanobodies targeting specific immune cell receptors (CD62L and CD45). <i>In vitro</i> transduction assays conducted with one rAAV-nanobody conjugate demonstrated the promising targeting properties of these chemically modified vectors. Thus, we anticipate that this strategy will positively impact the field of rAAV capsid engineering and contribute in tissue-specific targeting for the optimization of gene therapy treatments.</p>","PeriodicalId":29,"journal":{"name":"Bioconjugate Chemistry","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00580","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
We report the chemical conjugation of a recombinant Adeno Associated Virus (rAAV) capsid with various functionalities, including proteins, using a bioorthogonal strategy. rAAVs were azido-coated or dibenzylcyclooctyne (DBCO)-coated by chemically modifying lysine or tyrosine residues. Lysine residues were modified using a phenyl isothiocyanate anchor, and tyrosine residues using either an aryl diazonium salt or a N-methyl luminol derivative. We demonstrate anchor-dependent labeling levels, as observed with biochemical assays and mass spectrometry. Strain-promoted azide-alkyne cycloaddition (SPAAC) was then implemented and evaluated on the rAAV to append functionalities such as fluorescein, biotin, and carbohydrates to the azido-coated capsids. We confirmed the efficiency of the bioorthogonal reaction and observed a stronger reactivity with dibenzylcyclooctyne (DBCO) compared to bicyclononyne (BCN). The optimized SPAAC reaction was finally used to label the viral vectors with two relevant nanobodies targeting specific immune cell receptors (CD62L and CD45). In vitro transduction assays conducted with one rAAV-nanobody conjugate demonstrated the promising targeting properties of these chemically modified vectors. Thus, we anticipate that this strategy will positively impact the field of rAAV capsid engineering and contribute in tissue-specific targeting for the optimization of gene therapy treatments.
期刊介绍:
Bioconjugate Chemistry invites original contributions on all research at the interface between man-made and biological materials. The mission of the journal is to communicate to advances in fields including therapeutic delivery, imaging, bionanotechnology, and synthetic biology. Bioconjugate Chemistry is intended to provide a forum for presentation of research relevant to all aspects of bioconjugates, including the preparation, properties and applications of biomolecular conjugates.