Lateral Spacing of TiO2 Nanotube Coatings Modulates In Vivo Early New Bone Formation.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-28 DOI:10.3390/biomimetics10020081
Andreea Mariana Negrescu, Iuliana Ionascu, Madalina Georgiana Necula, Niculae Tudor, Maksim Kamaleev, Otilia Zarnescu, Anca Mazare, Patrik Schmuki, Anisoara Cimpean
{"title":"Lateral Spacing of TiO<sub>2</sub> Nanotube Coatings Modulates In Vivo Early New Bone Formation.","authors":"Andreea Mariana Negrescu, Iuliana Ionascu, Madalina Georgiana Necula, Niculae Tudor, Maksim Kamaleev, Otilia Zarnescu, Anca Mazare, Patrik Schmuki, Anisoara Cimpean","doi":"10.3390/biomimetics10020081","DOIUrl":null,"url":null,"abstract":"<p><p>Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant's stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO<sub>2</sub>) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study's aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants' hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin-HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 µm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853438/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Due to the bio-inert nature of titanium (Ti) and subsequent accompanying chronic inflammatory response, an implant's stability and function can be significantly affected, which is why various surface modifications have been employed, including the deposition of titanium oxide (TiO2) nanotubes (TNTs) onto the native surface through the anodic oxidation method. While the influence of nanotube diameter on cell behaviour and osteogenesis is very well documented, information regarding the effects of nanotube lateral spacing on the in vivo new bone formation process is insufficient and hard to find. Considering this, the present study's aim was to evaluate the mechanical properties and the osteogenic ability of two types of TNTs-based pins with different lateral spacing, e.g., 25 nm (TNTs) and 92 nm (spTNTs). The mechanical properties of the TNT-coated implants were characterised from a morphological point of view (tube diameter, spacing, and tube length) using scanning electron microscopy (SEM). In addition, the chemical composition of the implants was evaluated using X-ray photoelectron spectroscopy, while surface roughness and topography were characterised using atomic force microscopy (AFM). Finally, the implants' hardness and elastic modulus were investigated using nanoindentation measurements. The in vivo new bone formation was histologically evaluated (haematoxylin and eosin-HE staining) at 6 and 30 days post-implantation in a rat model. Mechanical characterisation revealed that the two morphologies presented a similar chemical composition and mechanical strength, but, in terms of surface roughness, the spTNTs exhibited a higher average roughness. The microscopic examination at 1 month post-implantation revealed that spTNTs pins (57.21 ± 34.93) were capable of promoting early new bone tissue formation to a greater extent than the TNTs-coated implants (24.37 ± 6.5), with a difference in the average thickness of the newly formed bone tissue of ~32.84 µm, thus highlighting the importance of this parameter when designing future dental/orthopaedic implants.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Effect of Different Luting Methods on the Microtensile Bond Strength of CAD/CAM Resin Blocks. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Plants Inspired Biomimetics Architecture in Modern Buildings: A Review of Form, Function and Energy. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1