Yi Luo, Wenfei Liao, Yue Li, Wen Chen, Sen Zhong, Cuiping Wu, Kaikai Yao, Rui Yang, Miaomiao Ma, Guoshu Gong
{"title":"A Rapid and Reliable Propidium Monoazide Polymerase Chain Reaction for Detecting Viable <i>Pseudomonas syringae</i> pv. <i>actinidiae</i>.","authors":"Yi Luo, Wenfei Liao, Yue Li, Wen Chen, Sen Zhong, Cuiping Wu, Kaikai Yao, Rui Yang, Miaomiao Ma, Guoshu Gong","doi":"10.3390/cimb47020103","DOIUrl":null,"url":null,"abstract":"<p><p><i>Pseudomonas syringae</i> pv. <i>actinidiae</i> (Psa) is responsible for causing kiwifruit canker disease. The detection of Psa is commonly carried out using normal PCR and culture-based isolation. However, normal PCR does not differentiate between live and dead cells, potentially resulting in the incorrect estimation of the amount of infectious substance in a sample. Such an incorrect estimation could result in unnecessary phytosanitary strategies and control measures. This study attempts to establish a specific assay for detecting only live Psa bacterial cells. To achieve this, a pair of strain-specific primers designed from <i>HopZ3</i> effector were used, and the traditional PCR method was assessed using a nucleic acid-binding dye (propidium monoazide-PMA), establishing a PMA-PCR system and conditions for detecting live Psa in this study. Sensitivity tests showed a detection limit of 10 cfu/mL and 1 pg/μL. This method was also tested in diseased kiwifruit tissues and can be seen as a rapid and dependable replacement to PCR methods for detecting only those infective kiwifruit materials with viable Psa.</p>","PeriodicalId":10839,"journal":{"name":"Current Issues in Molecular Biology","volume":"47 2","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853844/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Issues in Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/cimb47020103","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Pseudomonas syringae pv. actinidiae (Psa) is responsible for causing kiwifruit canker disease. The detection of Psa is commonly carried out using normal PCR and culture-based isolation. However, normal PCR does not differentiate between live and dead cells, potentially resulting in the incorrect estimation of the amount of infectious substance in a sample. Such an incorrect estimation could result in unnecessary phytosanitary strategies and control measures. This study attempts to establish a specific assay for detecting only live Psa bacterial cells. To achieve this, a pair of strain-specific primers designed from HopZ3 effector were used, and the traditional PCR method was assessed using a nucleic acid-binding dye (propidium monoazide-PMA), establishing a PMA-PCR system and conditions for detecting live Psa in this study. Sensitivity tests showed a detection limit of 10 cfu/mL and 1 pg/μL. This method was also tested in diseased kiwifruit tissues and can be seen as a rapid and dependable replacement to PCR methods for detecting only those infective kiwifruit materials with viable Psa.
期刊介绍:
Current Issues in Molecular Biology (CIMB) is a peer-reviewed journal publishing review articles and minireviews in all areas of molecular biology and microbiology. Submitted articles are subject to an Article Processing Charge (APC) and are open access immediately upon publication. All manuscripts undergo a peer-review process.