Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-02-12 DOI:10.3390/biomimetics10020106
S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee
{"title":"Long Short-Term Memory-Enabled Electromyography-Controlled Adaptive Wearable Robotic Exoskeleton for Upper Arm Rehabilitation.","authors":"S M U S Samarakoon, H M K K M B Herath, S L P Yasakethu, Dileepa Fernando, Nuwan Madusanka, Myunggi Yi, Byeong-Il Lee","doi":"10.3390/biomimetics10020106","DOIUrl":null,"url":null,"abstract":"<p><p>Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (<i>p</i> = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852623/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020106","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Restoring strength, function, and mobility following an illness, accident, or surgery is the primary goal of upper arm rehabilitation. Exoskeletons offer adaptable support, enhancing patient engagement and accelerating recovery. This work proposes an adjustable, wearable robotic exoskeleton powered by electromyography (EMG) data for upper arm rehabilitation. Three activation levels-low, medium, and high-were applied to the EMG data to forecast the Pulse Width Modulation (PWM) based on the range of motion (ROM) angle. Conventional machine learning (ML) models, including K-Nearest Neighbor Regression (K-NNR), Support Vector Regression (SVR), and Random Forest Regression (RFR), were compared with neural network approaches, including Gated Recurrent Units (GRUs) and Long Short-Term Memory (LSTM) to determine the best ML model for the ROM angle prediction. The LSTM model emerged as the best predictor with a high accuracy of 0.96. The system achieved 0.89 accuracy in exoskeleton control and 0.85 accuracy in signal categorization. Additionally, the proposed exoskeleton demonstrated a 0.97 performance in ROM correction compared to conventional methods (p = 0.097). These findings highlight the potential of EMG-based, LSTM-enabled exoskeleton systems to deliver accurate and adaptive upper arm rehabilitation, particularly for senior citizens, by providing personalized and effective support.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Effect of Different Luting Methods on the Microtensile Bond Strength of CAD/CAM Resin Blocks. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Plants Inspired Biomimetics Architecture in Modern Buildings: A Review of Form, Function and Energy. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1