Shengkai Liu, Hongfei Yu, Ning Ding, Xuchun He, Hengli Liu, Jun Zhang
{"title":"Exploring Modeling Techniques for Soft Arms: A Survey on Numerical, Analytical, and Data-Driven Approaches.","authors":"Shengkai Liu, Hongfei Yu, Ning Ding, Xuchun He, Hengli Liu, Jun Zhang","doi":"10.3390/biomimetics10020071","DOIUrl":null,"url":null,"abstract":"<p><p>Soft arms, characterized by their compliance and adaptability, have gained significant attention in applications ranging from industrial automation to biomedical fields. Modeling these systems presents unique challenges due to their high degrees of freedom, nonlinear behavior, and complex material properties. This review provides a comprehensive overview of three primary modeling approaches: numerical methods, analytical techniques, and data-driven models. Numerical methods, including finite element analysis and multi-body dynamics, offer precise but computationally expensive solutions for simulating soft arm behaviors. Analytical models, rooted in continuum mechanics and simplified assumptions, provide insights into the fundamental principles while balancing computational efficiency. Data-driven approaches, leveraging machine learning and artificial intelligence, open new avenues for adaptive and real-time modeling by bypassing explicit physical formulations. The strengths, limitations, and application scenarios of each approach are systematically analyzed, and future directions for integrating these methodologies are discussed. This review aims to guide researchers in selecting and developing effective modeling strategies for advancing the field of soft robotic arm design and control.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Soft arms, characterized by their compliance and adaptability, have gained significant attention in applications ranging from industrial automation to biomedical fields. Modeling these systems presents unique challenges due to their high degrees of freedom, nonlinear behavior, and complex material properties. This review provides a comprehensive overview of three primary modeling approaches: numerical methods, analytical techniques, and data-driven models. Numerical methods, including finite element analysis and multi-body dynamics, offer precise but computationally expensive solutions for simulating soft arm behaviors. Analytical models, rooted in continuum mechanics and simplified assumptions, provide insights into the fundamental principles while balancing computational efficiency. Data-driven approaches, leveraging machine learning and artificial intelligence, open new avenues for adaptive and real-time modeling by bypassing explicit physical formulations. The strengths, limitations, and application scenarios of each approach are systematically analyzed, and future directions for integrating these methodologies are discussed. This review aims to guide researchers in selecting and developing effective modeling strategies for advancing the field of soft robotic arm design and control.