Exploring Modeling Techniques for Soft Arms: A Survey on Numerical, Analytical, and Data-Driven Approaches.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-24 DOI:10.3390/biomimetics10020071
Shengkai Liu, Hongfei Yu, Ning Ding, Xuchun He, Hengli Liu, Jun Zhang
{"title":"Exploring Modeling Techniques for Soft Arms: A Survey on Numerical, Analytical, and Data-Driven Approaches.","authors":"Shengkai Liu, Hongfei Yu, Ning Ding, Xuchun He, Hengli Liu, Jun Zhang","doi":"10.3390/biomimetics10020071","DOIUrl":null,"url":null,"abstract":"<p><p>Soft arms, characterized by their compliance and adaptability, have gained significant attention in applications ranging from industrial automation to biomedical fields. Modeling these systems presents unique challenges due to their high degrees of freedom, nonlinear behavior, and complex material properties. This review provides a comprehensive overview of three primary modeling approaches: numerical methods, analytical techniques, and data-driven models. Numerical methods, including finite element analysis and multi-body dynamics, offer precise but computationally expensive solutions for simulating soft arm behaviors. Analytical models, rooted in continuum mechanics and simplified assumptions, provide insights into the fundamental principles while balancing computational efficiency. Data-driven approaches, leveraging machine learning and artificial intelligence, open new avenues for adaptive and real-time modeling by bypassing explicit physical formulations. The strengths, limitations, and application scenarios of each approach are systematically analyzed, and future directions for integrating these methodologies are discussed. This review aims to guide researchers in selecting and developing effective modeling strategies for advancing the field of soft robotic arm design and control.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853242/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020071","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft arms, characterized by their compliance and adaptability, have gained significant attention in applications ranging from industrial automation to biomedical fields. Modeling these systems presents unique challenges due to their high degrees of freedom, nonlinear behavior, and complex material properties. This review provides a comprehensive overview of three primary modeling approaches: numerical methods, analytical techniques, and data-driven models. Numerical methods, including finite element analysis and multi-body dynamics, offer precise but computationally expensive solutions for simulating soft arm behaviors. Analytical models, rooted in continuum mechanics and simplified assumptions, provide insights into the fundamental principles while balancing computational efficiency. Data-driven approaches, leveraging machine learning and artificial intelligence, open new avenues for adaptive and real-time modeling by bypassing explicit physical formulations. The strengths, limitations, and application scenarios of each approach are systematically analyzed, and future directions for integrating these methodologies are discussed. This review aims to guide researchers in selecting and developing effective modeling strategies for advancing the field of soft robotic arm design and control.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Effect of Different Luting Methods on the Microtensile Bond Strength of CAD/CAM Resin Blocks. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Plants Inspired Biomimetics Architecture in Modern Buildings: A Review of Form, Function and Energy. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1