Taylor Bader, Kyle Boone, Chris Johnson, Cindy L Berrie, Candan Tamerler
{"title":"Probing Solid-Binding Peptide Self-Assembly Kinetics Using a Frequency Response Cooperativity Model.","authors":"Taylor Bader, Kyle Boone, Chris Johnson, Cindy L Berrie, Candan Tamerler","doi":"10.3390/biomimetics10020107","DOIUrl":null,"url":null,"abstract":"<p><p>Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio-hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties involving peptide-peptide and peptide-solid interactions, which result in high-affinity material-selective binding. Atomic force microscopy investigations confirmed this complex interplay of multi-step peptide assemblies in a cooperative modus. Yet, most studies report adsorption properties of SBPs using non-cooperative or single-step adsorption models. Using non-cooperative kinetic models for predicting cooperative self-assembly behavior creates an oversimplified view of peptide adsorption, restricting implementing SBPs beyond their current use. To address these limitations and provide insight into surface-level events during self-assembly, a novel method, the Frequency Response Cooperativity model, was developed. This model iteratively fits adsorption data through spectral analysis of several time-dependent kinetic parameters. The model, applied to a widely used gold-binding peptide data obtained using a quartz crystal microbalance with dissipation, verified multi-step assembly. Peak deconvolution of spectral plots revealed distinct differences in the size and distribution of the kinetic rates present during adsorption across the concentrations. This approach provides new fundamental insights into the intricate dynamics of self-assembly of biomolecules on surfaces.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853711/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020107","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomolecular adsorption has great significance in medical, environmental, and technological processes. Understanding adsorption equilibrium and binding kinetics is essential for advanced process implementation. This requires identifying intrinsic determinants that predict optimal adsorption properties at bio-hybrid interfaces. Solid-binding peptides (SBPs) have targetable intrinsic properties involving peptide-peptide and peptide-solid interactions, which result in high-affinity material-selective binding. Atomic force microscopy investigations confirmed this complex interplay of multi-step peptide assemblies in a cooperative modus. Yet, most studies report adsorption properties of SBPs using non-cooperative or single-step adsorption models. Using non-cooperative kinetic models for predicting cooperative self-assembly behavior creates an oversimplified view of peptide adsorption, restricting implementing SBPs beyond their current use. To address these limitations and provide insight into surface-level events during self-assembly, a novel method, the Frequency Response Cooperativity model, was developed. This model iteratively fits adsorption data through spectral analysis of several time-dependent kinetic parameters. The model, applied to a widely used gold-binding peptide data obtained using a quartz crystal microbalance with dissipation, verified multi-step assembly. Peak deconvolution of spectral plots revealed distinct differences in the size and distribution of the kinetic rates present during adsorption across the concentrations. This approach provides new fundamental insights into the intricate dynamics of self-assembly of biomolecules on surfaces.