Design and Development of Natural-Product-Derived Nanoassemblies and Their Interactions with Alpha Synuclein.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY Biomimetics Pub Date : 2025-01-28 DOI:10.3390/biomimetics10020082
Ipsita A Banerjee, Amrita Das, Mary A Biggs, Chau Anh N Phan, Liana R Cutter, Alexandra R Ren
{"title":"Design and Development of Natural-Product-Derived Nanoassemblies and Their Interactions with Alpha Synuclein.","authors":"Ipsita A Banerjee, Amrita Das, Mary A Biggs, Chau Anh N Phan, Liana R Cutter, Alexandra R Ren","doi":"10.3390/biomimetics10020082","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of two natural products, β-Boswellic acid (BA) and β-glycyrrhetinic acid (GH). Both BA and GH are known for their medicinal value, including their role as strong antioxidants, anti-inflammatory, neuroprotective and as anti-tumor agents. To enhance the bioavailability of these molecules, they were functionalized with three short peptides (YYIVS, MPDAHL and GSGGL) to create six conjugates with amphiphilic structures capable of facile self-assembly. The peptides were also derived from natural sources and have been known to display antioxidant activity. Depending upon the conjugate, nanofibers, nanovesicles or a mixture of both were formed upon self-assembly. The binding interactions of the nanoconjugates with α-Synuclein, a protein implicated in Parkinson's disease (PD) was examined through in silico studies and FTIR, circular dichroism and imaging studies. Our results indicated that the nanoassemblies interacted with alpha-synuclein fibrils efficaciously. Furthermore, the nanoassemblies were found to demonstrate high viability in the presence of microglial cells, and were found to enhance the uptake and interactions of α-Synuclein with microglial cells. The nanoconjugates designed in this work may be potentially utilized as vectors for peptide-based drug delivery or for other therapeutic applications.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 2","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11852371/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10020082","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic nanoassemblies derived from natural products are considered promising nanomaterials due to their self-assembling ability and their favorable interactions with biological molecules leading to their numerous applications as therapeutic agents or as molecular probes. In this work, we have created peptide nanoconjugates of two natural products, β-Boswellic acid (BA) and β-glycyrrhetinic acid (GH). Both BA and GH are known for their medicinal value, including their role as strong antioxidants, anti-inflammatory, neuroprotective and as anti-tumor agents. To enhance the bioavailability of these molecules, they were functionalized with three short peptides (YYIVS, MPDAHL and GSGGL) to create six conjugates with amphiphilic structures capable of facile self-assembly. The peptides were also derived from natural sources and have been known to display antioxidant activity. Depending upon the conjugate, nanofibers, nanovesicles or a mixture of both were formed upon self-assembly. The binding interactions of the nanoconjugates with α-Synuclein, a protein implicated in Parkinson's disease (PD) was examined through in silico studies and FTIR, circular dichroism and imaging studies. Our results indicated that the nanoassemblies interacted with alpha-synuclein fibrils efficaciously. Furthermore, the nanoassemblies were found to demonstrate high viability in the presence of microglial cells, and were found to enhance the uptake and interactions of α-Synuclein with microglial cells. The nanoconjugates designed in this work may be potentially utilized as vectors for peptide-based drug delivery or for other therapeutic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
期刊最新文献
From Stents to Smart Implants Employing Biomimetic Materials: The Impact of 4D Printing on Modern Healthcare. Effect of Different Luting Methods on the Microtensile Bond Strength of CAD/CAM Resin Blocks. Expanding the Applicability of Electroactive Polymers for Tissue Engineering Through Surface Biofunctionalization. Plants Inspired Biomimetics Architecture in Modern Buildings: A Review of Form, Function and Energy. Hybrid BCI for Meal-Assist Robot Using Dry-Type EEG and Pupillary Light Reflex.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1