{"title":"Effects of vessel noise on beluga (Delphinapterus leucas) call type use: ultrasonic communication as an adaptation to noisy environments?","authors":"Valeria Vergara, Marie-Ana Mikus, Clément Chion, Dominic Lagrois, Marianne Marcoux, Robert Michaud","doi":"10.1242/bio.061783","DOIUrl":null,"url":null,"abstract":"<p><p>Animal vocalizations can evolve structural features as long-term adaptations to noisy environments. Using such signals, cetaceans could mitigate masking from vessel noise. This study investigates whether beluga whales (Delphinapterus leucas) use ultrasonic high-frequency burst pulse (HFBP) calls to communicate in noisy conditions. We identified HFBP calls in three populations: St. Lawrence Estuary, Eastern High Arctic-Baffin Bay, and Western Hudson Bay. Focusing on the industrialized St. Lawrence, we investigated the effects of vessel noise on HFBP call rates compared to other call types. Ultrasonic calls, spanning a bandwidth of 36.4±6.5 to 144 kHz (Nyquist frequency), comprised 13% of the St. Lawrence beluga repertoire (n=25,435). Noise events (n=21) were defined as periods when at least one vessel was visible within 2 km of the hydrophone while belugas were within 500 m. Sound pressure levels were measured before, during, and after exposure. Generalized linear mixed models revealed consistent HFBP call rates before, during, and after vessel noise exposure, while contact calls and other call types declined during exposure (n=4,528). These findings suggest that ultrasonic signals that evolved in the Arctic-where ice-associated noise may have created a need for high-frequency communication-remain a viable communication channel in vessel noise, allowing belugas to exploit these signals to maintain communication. Understanding how belugas utilize signals in noisy environments can inform conservation strategies for noise-impacted marine mammals.</p>","PeriodicalId":9216,"journal":{"name":"Biology Open","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Open","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/bio.061783","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Animal vocalizations can evolve structural features as long-term adaptations to noisy environments. Using such signals, cetaceans could mitigate masking from vessel noise. This study investigates whether beluga whales (Delphinapterus leucas) use ultrasonic high-frequency burst pulse (HFBP) calls to communicate in noisy conditions. We identified HFBP calls in three populations: St. Lawrence Estuary, Eastern High Arctic-Baffin Bay, and Western Hudson Bay. Focusing on the industrialized St. Lawrence, we investigated the effects of vessel noise on HFBP call rates compared to other call types. Ultrasonic calls, spanning a bandwidth of 36.4±6.5 to 144 kHz (Nyquist frequency), comprised 13% of the St. Lawrence beluga repertoire (n=25,435). Noise events (n=21) were defined as periods when at least one vessel was visible within 2 km of the hydrophone while belugas were within 500 m. Sound pressure levels were measured before, during, and after exposure. Generalized linear mixed models revealed consistent HFBP call rates before, during, and after vessel noise exposure, while contact calls and other call types declined during exposure (n=4,528). These findings suggest that ultrasonic signals that evolved in the Arctic-where ice-associated noise may have created a need for high-frequency communication-remain a viable communication channel in vessel noise, allowing belugas to exploit these signals to maintain communication. Understanding how belugas utilize signals in noisy environments can inform conservation strategies for noise-impacted marine mammals.
期刊介绍:
Biology Open (BiO) is an online Open Access journal that publishes peer-reviewed original research across all aspects of the biological sciences. BiO aims to provide rapid publication for scientifically sound observations and valid conclusions, without a requirement for perceived impact.